Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation

Abstract

The Src tyrosine kinases have been implicated in several aspects of neural development and nervous system function; however, their relevant substrates in brain and their mechanism of action in neurons remain to be established clearly. Here we identify the potent Rho regulatory protein, p190 RhoGAP (GTPase-activating protein), as the principal Src substrate detected in the developing and mature nervous system. We also find that mice lacking functional p190 RhoGAP exhibit defects in axon guidance and fasciculation. p190 RhoGAP is co-enriched with F-actin in the distal tips of axons, and overexpressing p190 RhoGAP in neuroblastoma cells promotes extensive neurite outgrowth, indicating that p190 RhoGAP may be an important regulator of Rho-mediated actin reorganization in neuronal growth cones. p190 RhoGAP transduces signals downstream of cell-surface adhesion molecules, and we find that p190-RhoGAP-mediated neurite outgrowth is promoted by the extracellular matrix protein laminin. Together with the fact that mice lacking neural adhesion molecules or Src kinases also exhibit defects in axon outgrowth, guidance and fasciculation, our results suggest that p190 RhoGAP mediates a Src-dependent adhesion signal for neuritogenesis to the actin cytoskeleton through the Rho GTPase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tyrosine phosphorylation of p190 RhoGAP in the nervous system.
Figure 2: Axon guidance defects in p190 RhoGAP mutant mice.
Figure 3: Development of the cerebral cortex in p190 RhoGAP mutant mice.
Figure 4: Aberrant axonal fasciculation in p190 RhoGAP mutant mice.
Figure 5: Induction of neuritogenesis in Neuro-2A cells by overexpression of p190 RhoGAP.
Figure 6: Promotion of integrin-mediated neuritogenesis by overexpression of p190 RhoGAP.

Similar content being viewed by others

References

  1. Umemori, H. et al. Specific expressions of Fyn and Lyn, lymphocyte antigen receptor-associated tyrosine kinases, in the central nervous system. Brain Res. Mol. Brain Res. 16, 303–310 (1992).

    Article  CAS  Google Scholar 

  2. Cotton, P. C. & Brugge, J. S. Neural tissues express high levels of the cellular src gene product pp60c-src. Mol. Cell. Biol. 3, 1157–1162 (1983).

    Article  CAS  Google Scholar 

  3. Grant, S. G. N. et al. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910 (1992).

    Article  CAS  Google Scholar 

  4. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).

    Article  CAS  Google Scholar 

  5. Stein, P. L., Lee, H. M., Rich, S. & Soriano, P. pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 70, 741–750 (1992).

    Article  CAS  Google Scholar 

  6. Stein, P. L., Vogel, H. & Soriano, P. Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice. Genes Dev. 8, 1999–2007 (1994).

    Article  CAS  Google Scholar 

  7. Bixby, J. L. & Jhabvala, P. Tyrosine phosphorylation in early embryonic growth cones. J. Neurosci. 13, 3421–3432 (1993).

    Article  CAS  Google Scholar 

  8. Maness, P. F., Aubry, M., Shores, C. G., Frame, L. & Pfenninger, K. H. c-src gene product in developing rat brain is enriched in nerve growth cone membranes. Proc. Natl Acad. Sci. USA 85, 5001–5005 (1988).

    Article  CAS  Google Scholar 

  9. Morse, W. R., Whitesides, J. G., 3rd, LaMantia, A. S. & Maness, P. F. p59fyn and pp60c-src modulate axonal guidance in the developing mouse olfactory pathway. J. Neurobiol. 36, 53–63 (1998).

    Article  CAS  Google Scholar 

  10. Beggs, H. E., Soriano, P. & Maness, P. F. NCAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice. J. Cell Biol. 127, 825–833 (1994).

    Article  CAS  Google Scholar 

  11. Ignelzi, M. A., Jr., Miller, D. R., Soriano, P. & Maness, P. F. - Impaired neurite outgrowth of src-minus cerebellar neurons on the cell adhesion molecule L1. Neuron 12, 873–884 (1994).

    Article  CAS  Google Scholar 

  12. Brown, M. T. & Cooper, J. A. Regulation, substrates and functions of src. Biochim. Biophys. Acta 1287, 121–149 (1996).

    Google Scholar 

  13. Moran, M. F., Polakis, P., McCormick, F., Pawson, T. & Ellis, C. Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution, and activity of p21 ras GTPase-activating protein. Mol. Cell. Biol. 11, 1804–1812 (1991).

    Article  CAS  Google Scholar 

  14. Settleman, J., Albright, C. F., Foster, L. C. & Weinberg, R. A. Association between GTPase activators for rho and ras families. Nature 359, 153–154 (1992).

    Article  CAS  Google Scholar 

  15. Ellis, C., Moran, M., McCormick, F. & Pawson, T. Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature 343, 377–381 (1990).

    Article  CAS  Google Scholar 

  16. Hu, K. Q. & Settleman, J. - Tandem SH2 binding sites mediate the RasGAP–RhoGAP interaction: a conformational mechanism for SH3 domain regulation. EMBO J. 16, 473–483 (1997).

    Article  CAS  Google Scholar 

  17. Roof, R. W. et al. Phosphotyrosine (p-Tyr)-dependent and -independent mechanisms of p190 RhoGAP–p120 RasGAP interaction: Tyr 1105 of p190, a substrate for c- Src, is the sole p-Tyr mediator of complex formation. Mol. Cell. Biol. 18, 7052–7063 (1998).

    Article  CAS  Google Scholar 

  18. Foster, R., Hu, K.-Q., Shaywitz, D. A. & Settleman, J. p190 RhoGAP, the major RasGAP-associated protein, binds GTP directly. Mol. Cell. Biol. 14, 7173–7181 (1994).

    Article  CAS  Google Scholar 

  19. Settleman, J., Narasimhan, V., Foster, L. C. & Weinberg, R. A. Molecular cloning of cDNAs encoding the GAP-associated protein p190; implications for a signaling pathway from ras to the nucleus. Cell 63, 539–549 (1992).

    Article  Google Scholar 

  20. Ridley, A. J. et al. rho GTPase activating proteins p190, bcr and RhoGAP show distinct specificities in vitro and in vivo. EMBO J. 12, 5151–5160 (1993).

    Article  CAS  Google Scholar 

  21. Ridley, A. J. Rho: theme and variations. Curr. Biol. 6, 1256–1264 (1996).

    Article  CAS  Google Scholar 

  22. Arthur, W. T., Petch, L. A. & Burridge, K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr. Biol. 10, 719–722 (2000).

    Article  CAS  Google Scholar 

  23. Burbelo, P. D. et al. p190-B, a new member of the Rho GAP family, and Rho are induced to cluster after integrin cross-linking. J. Biol. Chem. 270, 30919–30926 (1995).

    Article  CAS  Google Scholar 

  24. McGlade, J. et al. The amino-terminal region of GAP regulates cytoskeletal structure and cell ashesion. EMBO J. 12, 3073–3081 (1993).

    Article  CAS  Google Scholar 

  25. Nakahara, H. et al. Activation of beta1 integrin signaling stimulates tyrosine phosphorylation of p190RhoGAP and membrane-protrusive activities at invadopodia. J. Biol. Chem. 273, 9–12 (1998).

    Article  CAS  Google Scholar 

  26. Sharma, S. V. Rapid recruitment of p120RasGAP and its associated protein, p190RhoGAP, to the cytoskeleton during integrin mediated cell-substrate interaction. Oncogene 17, 271–281 (1998).

    Article  CAS  Google Scholar 

  27. Brouns, M. R. et al. The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development. Development 127, 4891–4903 (2000).

    CAS  Google Scholar 

  28. Klinghoffer, R. A., Sachsenmaier, C., Cooper, J. A. & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459–2471 (1999).

    Article  CAS  Google Scholar 

  29. Del Río, J. A., Martinez, A., Auladell, C. & Soriano, E. Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb. Cortex 10, 784–801 (2000).

    Article  Google Scholar 

  30. Fukuda, T. et al. Immunohistochemical localization of neurocan and L1 in the formation of thalamocortical pathway of developing rats. J. Comp. Neurol. 382, 141–152 (1997).

    Article  CAS  Google Scholar 

  31. Dahme, M. et al. Disruption of the mouse L1 gene leads to malformations of the nervous system. Nature Genet. 17, 346–349 (1997).

    Article  CAS  Google Scholar 

  32. Jalink, K. et al. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol. 126, 801–810 (1994).

    Article  CAS  Google Scholar 

  33. Leeuwen, F. N. et al. The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J. Cell Biol. 139, 797–807 (1997).

    Article  CAS  Google Scholar 

  34. Shea, T. B., Fischer, I. & Sapirstein, V. S. Effect of retinoic acid on growth and morphological differentiation of mouse NB2a neuroblastoma cells in culture. Brain Res. 353, 307–314 (1985).

    Article  CAS  Google Scholar 

  35. Duménil, G., Sansonetti, P. & Tran Van Nhieu, G. Src tyrosine kinase activity down-regulates Rho-dependent responses during Shigella entry into epithelial cells and stress fibre formation. J. Cell Sci. 113, 71–80 (2000).

    Google Scholar 

  36. Fincham, V. J., Chudleigh, A. & Frame, M. C. Regulation of p190 Rho-GAP by v-Src is linked to cytoskeletal disruption during transformation. J. Cell Sci. 112, 947–956 (1999).

    CAS  Google Scholar 

  37. Leblanc, V., Tocque, B. & Delumeau, I. Ras-GAP controls Rho-mediated cytoskeletal reorganization through its SH3 domain. Mol. Cell. Biol. 18, 5567–5578 (1998).

    Article  CAS  Google Scholar 

  38. Henkemeyer, M. et al. Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 377, 695–701 (1995).

    Article  CAS  Google Scholar 

  39. Lipfert, L. et al. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J. Cell Biol. 119, 905–912 (1992).

    Article  CAS  Google Scholar 

  40. Lu, Y. M., Roder, J. C., Davidow, J. & Salter, M. W. Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279, 1363–1367 (1998).

    Article  CAS  Google Scholar 

  41. Fifkova, E. & Morales, M. Actin matrix of dendritic spines, synaptic plasticity, and long-term potentiation. Int. Rev. Cytol. 139, 267–307 (1992).

    Article  CAS  Google Scholar 

  42. Kohmura, N. et al. Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20, 1137–1151 (1998).

    Article  CAS  Google Scholar 

  43. Beggs, H. E., Baragona, S. C., Hemperly, J. J. & Maness, P. F. NCAM140 interacts with the focal adhesion kinase p125(fak) and the SRC- related tyrosine kinase p59(fyn). J. Biol. Chem. 272, 8310–8319 (1997).

    Article  CAS  Google Scholar 

  44. Williams, E. J., Furness, J., Walsh, F. S. & Doherty, P. Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13, 583–594 (1994).

    Article  CAS  Google Scholar 

  45. Orioli, D., Henkemeyer, M., Lemke, G., Klein, R. & Pawson, T. Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation. EMBO J. 15, 6035–6049 (1996).

    Article  CAS  Google Scholar 

  46. Britsch, S. et al. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev. 12, 1825–1836 (1998).

    Article  CAS  Google Scholar 

  47. Henkemeyer, M. et al. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86, 35–46 (1996).

    Article  CAS  Google Scholar 

  48. Holland, S. J. et al. Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J. 16, 3877–3888 (1997).

    Article  CAS  Google Scholar 

  49. Goslin, K., Asmussen, H. & Banker, G. in Culturing Nerve Cells (eds Banker, G. & Goslin, K.) 339–370 (MIT Press, Cambridge, MA, 1998).

    Google Scholar 

  50. Mark, M. et al. Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119, 319–338 (1993).

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to V. Lemmon for the L1 antibody; K. Kosik for the MAP2 antibody; M. Lu and K. Kosik for assistance with video microscopy; M. Tessier-Lavigne for assistance with staining of spinal cord sections; E. Calautti for providing brains from src and fyn mutant mice; C. Hu for technical assistance; and members of the laboratory for helpful discussions. This work is supported by the NIH and American Cancer Society awards to J.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Settleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brouns, M., Matheson, S. & Settleman, J. p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation. Nat Cell Biol 3, 361–367 (2001). https://doi.org/10.1038/35070042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35070042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing