Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptotagmin I functions as a calcium regulator of release probability

Abstract

In all synapses, Ca2+ triggers neurotransmitter release to initiate signal transmission. Ca2+ presumably acts by activating synaptic Ca2+ sensors, but the nature of these sensors—which are the gatekeepers to neurotransmission—remains unclear. One of the candidate Ca2+ sensors in release is the synaptic Ca2+-binding protein synaptotagmin I. Here we have studied a point mutation in synaptotagmin I that causes a twofold decrease in overall Ca2+ affinity without inducing structural or conformational changes. When introduced by homologous recombination into the endogenous synaptotagmin I gene in mice, this point mutation decreases the Ca2+ sensitivity of neurotransmitter release twofold, but does not alter spontaneous release or the size of the readily releasable pool of neurotransmitters. Therefore, Ca2+ binding to synaptotagmin I participates in triggering neurotransmitter release at the synapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of the Ca2+-binding sites at the top of the C2A domain of synaptotagmin I.
Figure 2: Ca2+ titrations of wild-type and mutant C2A domains monitored by 1H–15N HSQC spectra.
Figure 3: Ca2+ dependence of phospholipid binding to wild-type and mutant C2A domains.
Figure 4: Generation of mice with mutant C2A domains.
Figure 5: Effect of the R233Q mutation on Ca2+-dependent phosphopholipid and syntaxin binding by native synaptotagmin.
Figure 6: Effect of the R233Q and K236Q mutations on synaptic responses in cultured hippocampal neurons.
Figure 7: Synaptic release probability in hippocampal neurons from R233Q knockin and wild-type knockin mice.
Figure 8: Pool sizes and Ca2+ responsiveness of synaptic vesicles in wild-type, R233Q and K236Q mutant synapses.

Similar content being viewed by others

References

  1. Katz, B. The Release of Neural Transmitter Substances (Liverpool Univ. Press, Liverpool, 1969).

    Google Scholar 

  2. Borst, J. G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Sabatini, B. L. & Regehr, W. G. Timing of synaptic transmission. Annu. Rev. Physiol. 61, 521–542 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Bennett, M. R. The concept of a calcium sensor in transmitter release. Prog. Neurobiol. 59, 243–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Burgoyne, R. D. & Morgan, A. Calcium sensors in regulated exocytosis. Cell Calcium 24, 367–376 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Kelly, R. B. Neural transmission. Synaptotagmin is just a calcium sensor. Curr. Biol. 5, 257–259 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. von Gersdorff, H. & Matthews, G. Electrophysiology of synaptic vesicle cycling. Annu. Rev. Physiol. 61, 725–752 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Perin, M. S., Fried, V. A., Mignery, G. A., Jahn, R. & Südhof, T. C. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345, 260–263 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Geppert, M. et al. Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Sutton, R. B., Davletov, B. A., Berghuis, A. M., Südhof, T. C. & Sprang, S. R. Structure of the first C2-domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80, 929–938 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Shao, X., Fernandez, I., Südhof, T. C. & Rizo, J. Solution structures of the Ca2+-free and Ca2+-bound C2A-domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry 37, 16106–16115 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Ubach, J., Zhang, X., Shao, X., Südhof, T. C. & Rizo, J. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J. 17, 3921–3930 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shao, X., Davletov, B. A., Sutton, R. B., Südhof, T. C. & Rizo, J. A bipartite Ca2+-binding motif in C2-domains of synaptotagmin and protein kinase C. Science 273, 248–251 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Davletov, B. & Südhof, T. C. A single C2-domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid-binding. J. Biol. Chem. 268, 26386–26390 (1993).

    CAS  PubMed  Google Scholar 

  15. Zhang, X., Rizo, J. & Südhof, T. C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry 36, 12395–12403 (1998).

    Article  Google Scholar 

  16. Brose, N., Petrenko, A. G., Südhof, T. C. & Jahn, R. Synaptotagmin: A Ca2+ sensor on the synaptic vesicle surface. Science 256, 1021–1025 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Mosior, M. & Epand, R. M. Characterization of the calcium-binding site that regulates association of protein kinase C with phospholipid bilayers. J. Biol. Chem. 269, 13798–13805 (1994).

    CAS  PubMed  Google Scholar 

  18. Verdaguer, N., Corbalan-Garcia, S., Ochoa, W. F., Fita, I. & Gomez-Fernandez, J. C. Ca2+ bridges the C2 membrane-binding domain of protein kinase Cα directly to phosphatidylserine. EMBO J. 18, 6329–6338 (2000).

    Article  Google Scholar 

  19. Li, C. et al. Ca2+-dependent and Ca2+-independent activities of neural and nonneural synaptotagmins. Nature 375, 594–599 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Chapman, E. R., Hanson, P. I., An, S. & Jahn, R. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J. Biol. Chem. 270, 23667–23771 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Kee, Y., Scheller & R. H. Localization of synaptotagmin-binding domains on syntaxin. J. Neurosci. 16, 1975–1981 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lagnado, L., Gomis, A. & Job, C. Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. Neuron 17, 957–967 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Bollmann, J. H., Sakmann, B. & Borst, J. G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Garcia, R. A., Forde, C. E. & Godwin, H. A. Calcium triggers an intramolecular association of the C2-domains in synaptotagmin. Proc. Natl Acad. Sci. USA 97, 5883–5888 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shao, X. et al. Synaptotagmin–syntaxin interaction: the C2-domain as a Ca2+-dependent electrostatic switch. Neuron 18, 133–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Rosahl, T. W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Perin, M. S., Brose, N., Jahn, R. & Südhof, T. C. Domain structure of synaptotagmin. J. Biol. Chem. 266, 623–629 (1991).

    CAS  PubMed  Google Scholar 

  29. Tugal, H. B., van Leeuwen, F., Apps, D. K., Haywood, J. & Phillips, J. H. Glycosylation and transmembrane topography of bovine chromaffin granule p65. Biochem. J. 279, 699–703 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bekkers, J. M. & Stevens, C. F. Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc. Natl Acad. Sci. USA 88, 7834–7838 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gomperts, S. N., Rao, A., Craig, A. M., Malenka, R. C. & Nicoll, R. A. Postsynaptically silent synapses in single neuron cultures. Neuron 21, 443–451 (1998).

    Article  Google Scholar 

  32. Augustin, I., Rosenmund, C., Südhof, T. C. & Brose, N. Munc-13 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Zucker, R. S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Thomson, A. M. Facilitation, augmentation and potentiation at central synapses. Trends Neurosci. 23, 305–312 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Rosenmund, C., Clements, J. D. & Westbrook, G. L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Hessler, N. A., Shirke, A. M. & Malinow, R. The probability of transmitter release at a mammalian central synapse. Nature 366, 569–572 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Rosenmund, C. & Stevens, C. F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Fatt, P. & Katz, B. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).

    CAS  Google Scholar 

  39. Mintz, I. M., Sabatini, B. L. & Regehr, W. G. Calcium control of transmitter release at a cerebellar synapse. Neuron 15, 675–688 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Catterall, W. A. Interactions of presynaptic Ca2+-channels and SNARE proteins in neurotransmitter release. Ann. N. Y. Acad. Sci. 868, 144–159 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Seagar, M. et al. Interactions between proteins implicated in exocytosis and voltage-gated calcium channels. Phil. Trans. R. Soc. Lond. B 354, 289–297 (1999).

    Article  CAS  Google Scholar 

  42. Uellner, R. et al. Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2-domain. EMBO J. 16, 7287–7296 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Edwards, A. S. & Newton, A. C. Regulation of protein kinase CβII by its C2-domain. Biochemistry 36, 15615–15623 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Nalefski, E. A. & Falke, J. J. Location of the membrane-docking face on the Ca2+-activated C2-domain of cytosolic phospholipase A2. Biochem. 37, 17642–17650 (1998).

    Article  CAS  Google Scholar 

  45. Williams, R. L. & Katan, M. Structural views of phosphoinositide-specific phospholipase C: signalling the way ahead. Structure 4, 1387–1394 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Blasi, J. et al. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J. 12, 4821–4828 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sugita, S., Hata, Y. & Südhof, T. C. Distinct Ca2+-dependent properties of the first and second C2-domains of synaptotagmin I. J. Biol. Chem. 271, 1262–1265 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Chapman, E. R., An, S., Edwardson, J. M. & Jahn, R. A novel function for the second C2-domain of synaptotagmin. Ca2+-triggered dimerization. J. Biol. Chem. 271, 5844–5849 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, O., Kay, L. E., Olivier, J. P. & Forman-Kay, J. Backbone 1H and 15N resonance assignments of N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J. Biomol. NMR 4, 845–858 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Herfort, I. Leznicki and A. Roth for technical assistance; H. Riedesel, J. Krause, S. Röcklin and the ARC in Dallas for help with mouse husbandry; and E. Neher, G. Alvarez de Toledo, J. López-Barneo and R. Jahn for advice. This study was supported by grants from the NIH to J.R., a grant from the Deutsche Forschungsgemeinschaft to C.R., Heisenberg Fellowships from the Deutsche Forschungsgemeinschaft to N.B. and C.R., a grant from the Perot Family Foundation to T.C.S., and postdoctoral fellowships from the Spanish Ministry of Education and the Fulbright Commission to R.F.C., and from the Deutsche Forschungsgemeinschaft to S.H.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Südhof.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Chacón, R., Königstorfer, A., Gerber, S. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001). https://doi.org/10.1038/35065004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065004

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing