Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Initial patterning of the central nervous system: How many organizers?

Abstract

For three-quarters of a century, developmental biologists have been asking how the nervous system is specified as distinct from the rest of the ectoderm during early development, and how it becomes subdivided initially into distinct regions such as forebrain, midbrain, hindbrain and spinal cord. The two events of 'neural induction' and 'early neural patterning' seem to be intertwined, and many models have been put forward to explain how these processes work at a molecular level. Here I consider early neural patterning and discuss the evidence for and against the two most popular models proposed for its explanation: the idea that multiple signalling centres (organizers) are responsible for inducing different regions of the nervous system, and a model first articulated by Nieuwkoop that invokes two steps (activation/transformation) necessary for neural patterning. As recent evidence from several systems challenges both models, I propose a modification of Nieuwkoop's model that most easily accommodates both classical and more recent data, and end by outlining some possible directions for future research.

Key Points

  • Different models have been proposed to explain the early patterning of the nervous system; among these, two have proved the most popular. On the one hand, the idea that there are separate organizers for the head and for the trunk/tail regions. On the other hand, the hypothesis first proposed by Nieuwkoop, which argues that neural patterning requires two steps: an activation step, in which neural fate is induced and the forebrain is specified; and a transformation step, in which some cells receive other signals from the organizer and acquire a caudal character.

  • Initial evidence favoured the existence of separate organizers; however, other findings have indicated that there might be a single region responsible for the direct induction of the forebrain or the head. Similarly, some evidence has lent support to Nieuwkoop's model, but a series of observations are incompatible with the two steps proposed by the model

  • As the two models are incompatible with each other, some experimental observations have been interpreted in terms of a mixture of both models. Indeed, recent results indicate that a modification of Nieuwkoop's model can successfully explain early neural patterning. In the new model, the chick hypoblast (and mouse anterior visceral endoderm, AVE) induces the transient expression of early neural and forebrain markers, thereby marking the cells that have been activated (as in Nieuwkoop's model). Then, maintenance signals are required for this state to be stabilized. Subsequently, some cells respond to the posteriorizing influence of the node and acquire a caudal phenotype. Furthermore, besides inducing the transient expression of early neural markers, the hypoblast/AVE also directs the anterior movement of the activated cells away from the influence of the node.

  • If the hypoblast/AVE transiently induces the expression of forebrain markers, what are the maintenance signals? What tissues are responsible for emitting the signals in amphibian embryos, which lack a structure equivalent to the hypoblast? When and how does the trunk nervous system become subdivided further? Although the new model accounts for the available evidence, these and many other questions still await an answer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Otto Mangold's experiment8.
Figure 2: Mouse and chick structures with proposed inducing functions.
Figure 3: Nieuwkoop's activation–transformation model48.
Figure 4: A modification of Nieuwkoop's model for neural induction and patterning.

Similar content being viewed by others

References

  1. Spemann, H. & Mangold, H. Über induktion von embryonalanlangen durch implantation artfremder organisatoren. Roux Arch. EntwMech. Org. 100, 599–638 ( 1924).

    Google Scholar 

  2. Hamburger, V. The Heritage of Experimental Embryology: Hans Spemann and the Organizer (Oxford Univ. Press, Oxford, 1988).

    Google Scholar 

  3. Holtfreter, J. Eigenschaften und verbreitung induzierender stoffe. Naturwissenschaften 21, 766–770 ( 1933).

    Article  CAS  Google Scholar 

  4. Holtfreter, J. Der einfluss thermischer, mechanischer und chemischer eingreffe auf die induzierfähighkeit von triton-keimteilen. Roux Arch. EntwMech. Org. 132 , 225–306 (1934).

    Article  Google Scholar 

  5. Chuang, H.-H. Weitere versuch über die veränderung der induktionsleistungen von gekochten organteilen. Arch. EntwMech. Org. 140, 25–38 (1940).

    Article  Google Scholar 

  6. Chuang, H.-H. Spezifische induktionsleistungen von leber und niere im explantationsversuch . Biol. Zbl. 58, 472–480 (1938).

    Google Scholar 

  7. Chuang, H.-H. Induktionsleistungen von frischen und gekochten organteilen (niere, leber) nach ihrer verpflanzung in explantate und verschiedene wirtsregionen von tritonkeimen . Arch. EntwMech. Org. 139, 556– 638 (1939).

    Article  Google Scholar 

  8. Mangold, O. Über die induktionsfähighkeit der verschiedenen bezirke der neurula von Urodelen. Naturwissenshaften 21, 761 –766 (1933).A clear demonstration that different regions of tissue invaginated from the organizer can induce different portions of the nervous system in urodele embryos.

    Article  Google Scholar 

  9. Spemann, H. Embryonic Development and Induction (Yale Univ. Press, New Haven, 1938).

    Book  Google Scholar 

  10. Saxen, L. & Toivonen, S. Primary Embryonic Induction (Logos/Academic, London, 1962).

    Google Scholar 

  11. Eyal-Giladi, H. & Wolk, M. The inducing capacities of the primary hypoblast as revealed by transfilter induction studies. Wilhelm Roux Arch. 165, 226–241 (1970).A neglected 'classic' — the first demonstration that a tissue with extraembryonic fate (the chick hypoblast) can induce prosencephalic traits when combined with epiblast.

    Article  Google Scholar 

  12. Beddington, R. S. P. Induction of a second neural axis by the mouse node. Development 120, 613–620 ( 1994).In this paper, Beddington shows that a graft of the mouse node induces an ectopic neural axis that lacks the most rostral structures.

    Article  CAS  PubMed  Google Scholar 

  13. Thomas, P. & Beddington, R. S. P. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo . Curr. Biol. 6, 1487–1496 (1996).A 'classic' paper and a technological tour de force . Using fiendishly difficult manipulations of the mouse embryo, the authors show that the anterior visceral endoderm moves anteriorly during development and that it is required for the expression of Hesx1 in the overlying, prospective forebrain epiblast.

    Article  CAS  PubMed  Google Scholar 

  14. Varlet, I., Collignon, J. & Robertson, E. J. Nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 124, 1033–1044 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Matsuo, I., Kuratani, S., Kimura, C., Takeda, N. & Aizawa, S. Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev. 9, 2646– 2658 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Rhinn, M. et al. Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development 125, 845–856 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  17. Perea-Gómez, A., Shawlot, W., Sasaki, H., Behringer, R. R. & Ang, S. HNF3β and Lim1 interact in the visceral endoderm to regulate primitive streak formation and anterior–posterior polarity in the mouse embryo. Development 126, 4499 –4511 (1999).

    Article  PubMed  Google Scholar 

  18. Rhinn, M., Dierich, A., Le Meur, M. & Ang, S. Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain. Development 126, 4295–4304 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Martinez Barbera, J. P. et al. The homeobox gene hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127, 2433–2445 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  20. Shawlot, W. et al. Lim1 is required in both primitive streak-derived tissues and visceral endoderm for head formation in the mouse. Development 126, 4925–4932 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  21. Shawlot, W. & Behringer, R. R. Requirement for Lim1 in head-organizer function. Nature 374, 425– 430 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Dufort, D., Schwartz, L., Harpal, K. & Rossant, J. The transcription factor HNF3β is required in visceral endoderm for normal primitive streak morphogenesis. Development 125, 3015– 3025 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Acampora, D. et al. Visceral endoderm-restricted translation of Otx1 mediates recovery of Otx2 requirements for specification of anterior neural plate and normal gastrulation. Development 125, 5091 –5104 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Acampora, D. et al. Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121, 3279–3290 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Bouwmeester, T., Kim, S.-H., Sasai, Y., Lu, B. & De Robertis, E. M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595–601 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998).References 25 and 26 were the first to show that misexpression of a single messenger RNA into the early embryo can generate isolated head structures without a trunk.

    Article  CAS  PubMed  Google Scholar 

  27. Hashimoto, H. et al. Zebrafish dkk1 functions in forebrain specification and axial mesendoderm formation. Dev. Biol. 217, 138 –152 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. de Souza, F. S. & Niehrs, C. Anterior endoderm and head induction in early vertebrate embryos. Cell Tissue Res. 300, 207–217 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  29. Knoetgen, H., Viebahn, C. & Kessel, M. Head induction in the chick by primitive endoderm of mammalian, but not avian origin. Development 126, 815–825 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Knoetgen, H., Teichmann, U. & Kessel, M. Head-organizing activities of endodermal tissues in vertebrates. Cell. Mol. Biol. 45, 481– 492 (1999).

    CAS  PubMed  Google Scholar 

  31. Niehrs, C. Head in the WNT: the molecular nature of Spemann's head organizer. Trends Genet. 15, 314–319 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Schneider, V. A. & Mercola, M. Spatially distinct head and heart inducers within the Xenopus organizer region. Curr. Biol. 12, 800–809 (1999). PubMed

    Article  Google Scholar 

  33. Tam, P. P. L. & Steiner, K. A. Anterior patterning by synergistic activity of the early gastrula organizer and the anterior germ layer tissues of the mouse embryo. Development 126, 5171 –5179 (1999).Sophisticated recombination experiments show that tissues other than the anterior visceral endoderm are required for forebrain specification in the mouse.

    Article  CAS  PubMed  Google Scholar 

  34. Ang, S. L. & Rossant, J. Anterior mesendoderm induces mouse Engrailed genes in explant cultures. Development 118 , 139–149 (1993). The first clear demonstration that the mouse mesendoderm has a distinct patterning role, as well as 'rostralizing' activity.

    Article  CAS  PubMed  Google Scholar 

  35. Camus, A. et al. The morphogenetic role of midline mesendoderm and ectoderm in the development of the forebrain and the midbrain of the mouse embryo. Development 127, 1799–1813 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Dale, J. K. et al. Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90, 257–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Foley, A. C., Storey, K. G. & Stern, C. D. The prechordal region lacks neural inducing ability, but can confer anterior character to more posterior neuroepithelium. Development 124, 2983–2996 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Pera, E. M. & Kessel, M. Patterning of the chick forebrain anlage by the prechordal plate. Development 124, 4153–4162 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Schier, A. F., Neuhauss, S. C., Helde, K. A., Talbot, W. S. & Driever, W. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail . Development 124, 327– 342 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Shimamura, K. & Rubenstein, J. L. Inductive interactions direct early regionalization of the mouse forebrain. Development 124, 2709–2718 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Kimura, C. et al. Visceral endoderm mediates forebrain development by suppressing posteriorizing signals. Dev. Biol. 225, 304–321 (2000).Knocking-in the gene of a lineage marker confirmed the movements of the anterior visceral endoderm during mouse development. Careful analysis of several mutants led to the proposal that these movements are essential for driving the prospective forebrain away from the caudalizing influence of the organizer.

    Article  CAS  PubMed  Google Scholar 

  42. Foley, A. C., Skromne, I. S. & Stern, C. D. Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast. Development 127, 3839–3854 (2000). The chick hypoblast directs cell movements in the adjacent epiblast and induces transient expression of neural and forebrain markers, but does not provide sufficient signals to commit cells to either a neural or a forebrain fate.

    Article  CAS  PubMed  Google Scholar 

  43. Gallera, J. & Nicolet, G. Le pouvoir inducteur de l'endoblaste presomptif contenu dans la ligne primitive jeune de l'embryon de poulet. J. Embryol. Exp. Morphol. 21, 105– 118 (1969).

    CAS  PubMed  Google Scholar 

  44. Gallera, J. Inductions cérébrales et médullaires chez les oiseaux . Experientia 26, 886–887 (1970).

    Article  CAS  PubMed  Google Scholar 

  45. Gallera, J. Le pouvoir inducteur de la jeune ligne primitive et les différences régionales dans les compétences de l'ectoblaste chez les oiseaux . Archives de Biologie 82, 85– 102 (1971).

    Google Scholar 

  46. Dias, M. S. & Schoenwolf, G. C. Formation of ectopic neurepithelium in chick blastoderms: age-related capacities for induction and self–differentiation following transplantation of quail Hensen's nodes. Anat. Rec. 228, 437–448 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Storey, K. G., Crossley, J. M., De Robertis, E. M., Norris, W. E. & Stern, C. D. Neural induction and regionalisation in the chick embryo. Development 114, 729 –741 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Nieuwkoop, P. D. & Nigtevecht, G. V. Neural activation and transformation in explants of competent ectoderm under the influence of fragments of anterior notochord in Urodeles. J. Embryol. Exp. Morph. 2, 175–193 ( 1954).The original description of Nieuwkoop's two-step model.

    Google Scholar 

  49. Nieuwkoop, P. D. et al. Activation and organization of the central nervous system in amphibians. J. Exp. Zool. 120, 1– 108 (1952).

    Article  Google Scholar 

  50. Eyal–Giladi, H. Dynamic aspects of neural induction in Amphibia. Arch. Biol. 65, 179–259 (1954).

    Google Scholar 

  51. Cox, W. G. & Hemmati-Brivanlou, A. Caudalization of neural fate by tissue recombination and bFGF. Development 121, 4349–4358 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Kengaku, M. & Okamoto, H. bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development 121, 3121–3130 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Avantaggiato, V., Acampora, D., Tuorto, F. & Simeone, A. Retinoic acid induces stage-specific repatterning of the rostral central nervous system . Dev. Biol. 175, 347–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Bally-Cuif, L., Gulisano, M., Broccoli, V. & Boncinelli, E. c-otx2 is expressed in two different phases of gastrulation and is sensitive to retinoic acid treatment in chick embryo. Mech. Dev. 49, 49–63 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Bang, A. G., Papalopulu, N., Kintner, C. & Goulding, M. D. Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm. Development 124, 2075–2085 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Blumberg, B. et al. An essential role for retinoid signaling in anteroposterior neural patterning. Development 124, 373– 379 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Boncinelli, E., Simeone, A., Acampora, D. & Mavilio, F. HOX gene activation by retinoic acid. Trends Genet. 7, 329–334 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Conlon, R. A. & Rossant, J. Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox–2 genes in vivo . Development 116, 357– 368 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Dekker, E. J. et al. Xenopus Hox-2 genes are expressed sequentially after the onset of gastrulation and are differentially inducible by retinoic acid . Dev. Suppl. 195–202 ( 1992).

  60. Durston, A. J. et al. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340, 140–144 (1989).

    Article  CAS  PubMed  Google Scholar 

  61. Gavalas, A. et al. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 125, 1123–1136 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Hill, J., Clarke, J. D., Vargesson, N., Jowett, T. & Holder, N. Exogenous retinoic acid causes specific alterations in the development of the midbrain and hindbrain of the zebrafish embryo including positional respecification of the Mauthner neuron. Mech. Dev. 50, 3–16 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  63. Marshall, H. et al. Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature 360, 737–741 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Muhr, J., Jessell, T. M. & Edlund, T. Assignment of early caudal identity to neural plate cells by a signal from caudal paraxial mesoderm. Neuron 19, 487–502 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Papalopulu, N. et al. Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. Development 113, 1145–1158 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  66. Ruiz i Altaba, A. & Jessell, T. M. Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos. Development 112, 945–958 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Simeone, A. et al. Retinoic acid induces stage-specific antero-posterior transformation of rostral central nervous system. Mech. Dev. 51, 83–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Yamada, T. Caudalization by the amphibian organizer: brachyury, convergent extension and retinoic acid. Development 120, 3051 –3062 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. McGrew, L. L., Lai, C. J. & Moon, R. T. Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin . Dev. Biol. 172, 337–342 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Saxén, L. & Toivonen, S. Primary Embryonic Induction (Academic, London, 1962).

    Google Scholar 

  71. Toivonen, S. in Organizer — A Milestone of a Half-Century Since Spemann (eds Nakamura, O. & Toivonen, S.) 119–156 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  72. Waddington, C. H. & Needham, J. Evocation and individuation and competence in amphibian organizer action. Proc. Kon. Akad. Wetensch. Amsterdam 39, 887– 891 (1936).

    Google Scholar 

  73. Gurdon, J. B. Embryonic induction — molecular prospects. Development 99, 285–306 (1987).

    Article  CAS  PubMed  Google Scholar 

  74. Smith, J. C. Mesoderm-inducing factors and mesodermal patterning. Curr. Opin. Cell Biol. 7, 856–861 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  75. Harland, R. & Gerhart, J. Formation and function of Spemann's organizer. Annu. Rev. Cell. Dev. Biol. 13, 611–667 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Streit, A., Berliner, A., Papanayotou, C., Sirulnik, A. & Stern, C. D. Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Wilson, S. I., Graziano, E., Harland, R., Jessell, T. M. & Edlund, T. An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr. Biol. 10, 421–429 ( 2000).Together with reference 76 , this paper shows that neural induction is initiated very early in development (before gastrulation) and that the early steps require FGF signalling.

    Article  CAS  PubMed  Google Scholar 

  78. Streit, A. & Stern, C. D. Establishment and maintenance of the border of the neural plate in the chick: involvement of FGF and BMP activity . Mech. Dev. 82, 51–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Amaya, E., Musci, T. J. & Kirschner, M. W. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257–270 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  80. Amaya, E., Stein, P. A., Musci, T. J. & Kirschner, M. W. FGF signaling in the early specification of mesoderm in Xenopus. Development 118, 477–487 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Rowan, A. M., Stern, C. D. & Storey, K. G. Axial mesendoderm refines rostrocaudal pattern in the chick nervous system. Development 126, 2921–2934 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Doniach, T., Phillips, C. R. & Gerhart, J. C. Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis. Science 257, 542–545 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  83. Ruiz i Altaba, A. Induction and axial patterning of the neural plate: planar and vertical signals . J. Neurobiol. 24, 1276– 1304 (1993).

    Article  PubMed  Google Scholar 

  84. Dixon, J. E. & Kintner, C. R. Cellular contacts required for neural induction in Xenopus embryos: evidence for two signals. Development 106, 749–757 (1989).

    Article  CAS  PubMed  Google Scholar 

  85. Papalopulu, N. & Kintner, C. Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals. Development 117, 961–975 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Storey, K. G., Selleck, M. A. J. & Stern, C. D. Neural induction and regionalisation by different subpopulations of cells in Hensen's node. Development 121, 417–428 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Sokol, S. & Melton, D. A. Pre-existent pattern in Xenopus animal pole cells revealed by induction with activin. Nature 351, 409–411 ( 1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review is dedicated to Rosa Beddington, who inspired so many, including myself, to think deeply about patterning of the nervous system. Although I have tried to provide a balanced view by incorporating data from many different model systems, I am unable to do justice to the work of many researchers, to whom I must apologize. The recent research of my group on this topic was funded by grants from the National Institutes of Mental Health (USA) and the Medical Research Council (UK).

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Nodal

Otx2

Lim1

Hesx1

Hex

Sox3

FGFs

Wnt3A

ERNI

Sox1

Glossary

GASTRULA

Embryonic stage at which the embryo becomes three-layered, forming the mesoderm and definitive (gut) endoderm.

SENSORY PLACODE

A thickened region of ectoderm that will later give rise to a sensory organ.

EPIBLAST

One of the layers of cells in the early embryo, which gives rise to the skin and nervous system.

PRIMITIVE STREAK

An elongated depression of reptile, bird and mammalian embryos, through which mesodermal and endodermal cells migrate into the interior of the embryo. The most anterior tip of the primitive streak forms Hensen's node. The streak is functionally homologous to the amphibian blastopore.

PRECHORDAL MESENDODERM

A tissue derived from the node, lying at the rostral tip of the head process (notochord). The mesodermal component will give rise to some eye muscles.

URODELE

Order of amphibians, including salamanders and newts, in which the larval tail persists in the adult.

PROSENCEPHALON

The most rostral of the primary vesicles present in the early neural tube, which later gives rise to two secondary vesicles: telencephalon (prospective cerebral hemispheres) and diencephalon (prospective thalamus and hypothalamus).

NEURULA

Stage of development following gastrulation, when the neural plate starts to form from the ectoderm.

BONE MORPHOGENETIC PROTEINS

Secreted proteins of the transforming growth factor-β superfamily. In the early embryo, they participate in dorsoventral patterning.

DOMINANT-NEGATIVE PROTEIN

A mutant molecule that forms heteromeric complexes with the wild type to yield a non-functional complex.

AREA OPACA

A peripheral ring of the early avian blastoderm, which only gives rise to extra-embryonic tissues.

ANIMAL CAP

An explant cut from an amphibian embryo at the blastula stage, comprising a 'cap' of about 60° centred on the animal pole.

NOTOCHORD

Rod-like structure of mesodermal origin in vertebrates, which provides rigidity to the early embryo and will later contribute to the vertebral centra and intervertebral disks.

TELEOST

Group of fish with bony skeletons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stern, C. Initial patterning of the central nervous system: How many organizers? . Nat Rev Neurosci 2, 92–98 (2001). https://doi.org/10.1038/35053563

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35053563

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing