Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport

Abstract

Haplo-insufficiency of human Lis1 causes lissencephaly. Reduced Lis1 activity in both humans and mice results in a neuronal migration defect. Here we show that Drosophila Lis1 is highly expressed in the nervous system. Lis1 is essential for neuroblast proliferation and axonal transport, as shown by a mosaic analysis using a Lis1 null mutation. Moreover, it is cell-autonomously required for dendritic growth, branching and maturation. Analogous mosaic analysis shows that neurons containing a mutated cytoplasmic-dynein heavy chain (Dhc64C) exhibit phenotypes similar to Lis1 mutants. These results implicate Lis1 as a regulator of the microtubule cytoskeleton and show that it is important for diverse physiological functions in the nervous system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lis1 is strongly expressed in the CNS and is distributed throughout mushroom-body neurons.
Figure 2: Illustration of MARCM and mushroom-body development.
Figure 3: Gross phenotypes of Lis1 and Dhc64C in mushroom-body neuroblast clones.
Figure 4: Lis1 and Dhc64C are required for proliferation of mushroom-body neuroblasts.
Figure 5: Lis1 is essential for dendritic morphogenesis of mushroom-body neurons.
Figure 6: Axonal swellings in Lis1 and Dhc64C clones.

Similar content being viewed by others

References

  1. Dobyns, W. B., Reiner, O., Carrozzo, R. & Ledbetter, D. H. Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. J. Am. Med. Assoc. 270, 2838–2842 (1993).

    Article  CAS  Google Scholar 

  2. Reiner, O. et al. Isolation of a Miller–Dieker lissencephaly gene containing G protein β-subunit-like repeats. Nature 364, 717–721 (1993).

    Article  CAS  Google Scholar 

  3. Hirotsune, S. et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nature Genet. 19, 333–339 (1998).

    Article  CAS  Google Scholar 

  4. Liu, Z., Xie, T. & Steward, R. Lis1, the Drosophila homolog of a human lissencephaly disease gene, is required for germline cell division and oocyte differentiation. Development 126, 4477–4488 (1999).

    CAS  PubMed  Google Scholar 

  5. Swan, A., Nguyen, T. & Suter, B. Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nature Cell Biol. 1, 444–449 (1999).

    Article  CAS  Google Scholar 

  6. Xiang, X., Osmani, A. H., Osmani, S. A., Xin, M. & Morris, N. R. NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol. Biol. Cell 6, 297–310 (1995).

    Article  CAS  Google Scholar 

  7. Neer, E. J., Schmidt, C. J., Nambudripad, R. & Smith, T. F. The ancient regulatory protein family of WD-repeat proteins. Nature 371, 297–300 (1994).

    Article  CAS  Google Scholar 

  8. Hattori, M., Adachi, H., Tsujimoto, M., Arai, H. & Inoue, K. Miller–Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor. Nature 370, 216–218 (1994).

    Article  CAS  Google Scholar 

  9. Sapir, T., Elbaum, M. & Reiner, O. Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J. 16, 6977–6984 (1997).

    Article  CAS  Google Scholar 

  10. Willins, D. A., Liu, B., Xiang, X. & Morris, N. R. Mutations in the heavy chain of cytoplasmic dynein suppress the nudF nuclear migration mutation of Aspergillus nidulans. Mol. Gen. Genet. 255, 194–200 (1997).

    Article  CAS  Google Scholar 

  11. Willins, D. A., Xiang, X. & Morris, N.R. An alpha tubulin mutation suppresses nuclear migration mutations in Aspergillus nidulans. Genetics 141, 1287–1298 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  Google Scholar 

  13. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  Google Scholar 

  14. Lee, T., Lee, A. & Luo, L. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126, 4065–4076 (1999).

    CAS  PubMed  Google Scholar 

  15. Lee, T., Winter, C., Marticke, S. S., Lee, A. & Luo, L. Essential roles of Drosophila RhoA in the regulation of neuroblast proliferation and dendritic but not axonal morphogenesis. Neuron 25, 307–316 (2000).

    Article  CAS  Google Scholar 

  16. Hurd, D. D. & Saxton, W. M. Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Genetics 144, 1075–1085 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gindhart, J. G. Jr, Desai, C. J., Beushausen, S., Zinn, K. & Goldstein, L. S. B. Kinesin light chains are essential for axonal transport in Drosophila. J. Cell Biol. 141, 443–454 (1998).

    Article  CAS  Google Scholar 

  18. Goldstein, L. S. B. & Yang, Z. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Ann. Rev. Neurosci. 23, 39–71 (2000).

    Article  CAS  Google Scholar 

  19. Ito, K. et al. The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster meigen. Learning and Memory 5, 52–77 (1998).

    CAS  PubMed  Google Scholar 

  20. Okada, Y., Yamazaki, H., Sekine-Aizawa, Y. & Hirokawa, N. The neuron-specific superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769–780 (1995).

    Article  CAS  Google Scholar 

  21. Li, M-g., McGrail, M., Serr, M. & Hays, T. S. Drosophila cytoplasmic dynein, a microtubule motor that is asymmetrically localized in the oocyte. J. Cell Biol. 126, 1475–1494 (1994).

    Article  CAS  Google Scholar 

  22. Gepner, J. et al. Cytoplasmic dynein function is essential in Drosophila melanogaster. Genetics 142, 865–878 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. McGrail, M. & Hays, T. S. The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 124, 2409–2419 (1997).

    CAS  PubMed  Google Scholar 

  24. Baas, P. W. Microtubules and neuronal polarity: lessons from mitosis. Neuron 22, 23–31 (1999).

    Article  CAS  Google Scholar 

  25. Smith, D. S. et al. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nature Cell Biol. 2, 767–775 (2000).

    Article  CAS  Google Scholar 

  26. Robinson, J. T., Wojcik, E. J., Sanders, M. A., McGrail, M. & Hays, T. S. Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila. J. Cell Biol. 146, 597–608 (1999).

    Article  CAS  Google Scholar 

  27. Giniger, E., Wells, W., Jan, L. Y. & Jan, Y. N. Tracing neurons with a kinesin-·-galactosidase fusion protein. Roux's Arch. Dev. Biol. 202, 112–122 (1993).

    Article  CAS  Google Scholar 

  28. Clark, I. E., Jan, L. Y. & Jan, Y. N. Reciprocal localization of Nod and kinesin fusion proteins indicates microtubule polarity in the Drosophila oocyte, epithelium, neuron and muscle. Development 124, 461–470 (1997).

    CAS  PubMed  Google Scholar 

  29. Fleck, M. W. et al. Hippocampal abnormalities and enhanced excitibility in a murine model of human lissencephaly. J. Neurosci. 20, 2439–2450 (2000).

    Article  CAS  Google Scholar 

  30. Bowman, A. B. et al. Drosophila roadblock and Chlamydomonas LC7: a conserved family of dynein-associated proteins involved in axonal transport, flagellar motility, and mitosis. J. Cell Biol. 146, 165–179 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Martin, M. A. et al. Cytoplasmic dynein, the dynactin complex and kinesin are interdependent and essential for fast axonal transport. Mol. Biol. Cell 10, 3717–3728 (1999).

    Article  CAS  Google Scholar 

  32. Theurkauf, W. E., Baum, H., Bo, J. & Wensink, P. C. Tissue-specific and constitutive a-tubulin genes of Drosophila melangaster code for structurally distinct proteins. Proc. Natl Acad. Sci. USA 83, 8477–8481 (1986).

    Article  CAS  Google Scholar 

  33. Spradling, A. C. & Rubin, G. M. Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218, 341–347 (1982).

    Article  CAS  Google Scholar 

  34. Berry, M. & Bradley, P. The growth of the dendritic trees of Purkinje cells in the cerebellum of the rat. Brain Res. 112, 1–35 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Hays and W. E. Theurkauf for reagents, L-H. Tsai for sharing results before publication, and R. Kopito and members of the Luo laboratory for discussions and comments on the manuscript. Z.L. is a fellow of the Epilepsy Training Grant from Stanford University. This work was supported by NIH grant R01-NS36623 and fellowships from the McKnight, Klingenstein and Sloan foundations to L.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqun Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Steward, R. & Luo, L. Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nat Cell Biol 2, 776–783 (2000). https://doi.org/10.1038/35041011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041011

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing