Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Slow axonal transport: stop and go traffic in the axon

Abstract

Efforts to observe the slow axonal transport of cytoskeletal polymers during the past decade have yielded conflicting results, and this has generated considerable controversy. The movement of neurofilaments has now been seen, and it is rapid, infrequent and highly asynchronous. This motile behaviour could explain why slow axonal transport has eluded observation for so long.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetics of slow axonal transport.
Figure 2: A neurofilament on the move.
Figure 3: A model for the movement of neurofilaments in axons.

Similar content being viewed by others

References

  1. Lasek, R. J., Garner, J. A. & Brady, S. T. Axonal transport of the cytoplasmic matrix. J. Cell Biol. 99, S212–S221 (1984).

    Article  Google Scholar 

  2. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport . Science 279, 519–526 (1998).

    Article  CAS  Google Scholar 

  3. Lim, S.-S., Sammak, P. J. & Borisy, G. G. Progressive and spatially differentiated stability of microtubules in developing neuronal cells. J. Cell Biol. 109, 253–263 (1989).

    Article  CAS  Google Scholar 

  4. Lim, S.-S., Edson, K. J., Letourneau, P. C. & Borisy, G. G. A test of microtubule translocation during neurite elongation. J. Cell Biol. 111, 123–130 (1990).

    Article  CAS  Google Scholar 

  5. Okabe, S. & Hirokawa, N. Turnover of fluorescently labelled tubulin and actin in the axon. Nature 343, 479–482 (1990).

    Article  CAS  Google Scholar 

  6. Okabe, S., Miyasaka, H. & Hirokawa, N. Dynamics of the neuronal intermediate filaments. J. Cell Biol. 121, 375–386 (1993).

    Article  CAS  Google Scholar 

  7. Takeda, S., Okabe, S., Funakoshi, T. & Hirokawa, N. Differential dynamics of neurofilament-H protein and neurofilament-L protein in neurons . J. Cell Biol. 127, 173– 185 (1994).

    Article  CAS  Google Scholar 

  8. Sabry, J., O'Connor, T. P. & Kirschner, M. W. Axonal transport of tubulin in Ti1 pioneer neurons in situ. Neuron 14, 1247– 1256 (1995).

    Article  CAS  Google Scholar 

  9. Takeda, S., Funakoshi, T. & Hirokawa, N. Tubulin dynamics in neuronal axons of living zebrafish embryos. Neuron 14, 1257– 1264 (1995).

    Article  CAS  Google Scholar 

  10. Reinsch, S. S., Mitchison, T. J. & Kirschner, M. W. Microtubule polymer assembly and transport during axonal elongation. J. Cell Biol. 115, 365 –379 (1991).

    Article  CAS  Google Scholar 

  11. Okabe, S. & Hirokawa, N. Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons. J. Cell Biol. 117, 105–120 ( 1992).

    Article  CAS  Google Scholar 

  12. Okabe, S. & Hirokawa, N. Do photobleached fluorescent microtubules move? Re-evaluation of fluorescence laser photobleaching both in vitro and in growing Xenopus axons. J. Cell Biol. 120 , 1177–1186 (1993).

    Article  CAS  Google Scholar 

  13. Chang, S. H., Rodionov, V. I., Borisy, G. G. & Popov, S. V. Transport and turnover of microtubules in frog neurons depend on the pattern of axonal growth. J. Neurosci. 18, 821– 829 (1998).

    Article  CAS  Google Scholar 

  14. Wang, L., Ho, C.-L., Sun, D., Liem, R. K. H. & Brown, A. Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nature Cell Biol. 2, 137–141 (2000).

    Article  CAS  Google Scholar 

  15. Roy, S. et al. Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. J. Neurosci. 20, 6849–6861 (2000).

    Article  CAS  Google Scholar 

  16. Lasek, R. J., Paggi, P. & Katz, M. J. Slow axonal transport mechanisms move neurofilaments relentlessly in mouse optic axons. J. Cell Biol. 117, 607–616 (1992).

    Article  CAS  Google Scholar 

  17. Nixon, R. A. & Logvinenko, K. B. Multiple fates of newly synthesized neurofilament proteins: Evidence for a stationary neurofilament network distributed non-uniformly along axons of retinal ganglion cells. J. Cell Biol. 102, 647–659 ( 1986).

    Article  CAS  Google Scholar 

  18. Nixon, R. A. Dynamic behavior and organization of cytoskeletal proteins in neurons: reconciling old and new findings. Bioessays 20, 798– 807 (1998).

    Article  CAS  Google Scholar 

  19. Lasek, R. J., Paggi, P. & Katz, M. J. The maximum rate of neurofilament transport in axons: a view of molecular transport mechanisms continuously engaged. Brain Res. 616, 58–64 ( 1993).

    Article  CAS  Google Scholar 

  20. Black, M. M., Keyser, P. & Sobel, E. Interval between the synthesis and assembly of cytoskeletal proteins in cultured neurons. J. Neurosci. 6, 1004–1012 (1986).

    Article  CAS  Google Scholar 

  21. Baas, P. W. & Brown, A. Slow axonal transport: the polymer transport model. Trends Cell Biol. 7, 380 –384 (1997).

    Article  CAS  Google Scholar 

  22. Hirokawa, N., Terada, S., Funakoshi, T. & Takeda, S. Slow axonal transport: the subunit transport model. Trends Cell Biol. 7, 384–388 ( 1997).

    Article  CAS  Google Scholar 

  23. Terasaki, M., Schmidek, A., Galbraith, J. A., Gallant, P. E. & Reese, T. S. Transport of cytoskeletal elements in the squid giant axon. Proc. Natl Acad. Sci. USA 92, 11500–11503 (1995).

    Article  CAS  Google Scholar 

  24. Ahmad, F. J. & Baas, P. W. Microtubules released from the neuronal centrosome are transported into the axon. J. Cell Sci. 108, 2761–2769 (1995).

    CAS  Google Scholar 

  25. Yu, W., Schwei, M. J. & Baas, P. W. Microtubule transport and assembly during axon growth . J. Cell Biol. 133, 151– 157 (1996).

    Article  CAS  Google Scholar 

  26. Slaughter, T., Wang, J. & Black, M. M. Microtubule transport from the cell body into the axons of growing neurons. J. Neurosci. 17, 5807 –5819 (1997).

    Article  CAS  Google Scholar 

  27. Ahmad, F. J., Echeverri, C. J., Vallee, R. B. & Baas, P. W. Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. J. Cell Biol. 140, 391– 401 (1998).

    Article  CAS  Google Scholar 

  28. Galbraith, J. A., Reese, T. S., Schlief, M. L. & Gallant, P. E. Slow transport of unpolymerized tubulin and polymerized neurofilament in the squid giant axon. Proc. Natl Acad. Sci. USA 96, 11589–11594 (1999).

    Article  CAS  Google Scholar 

  29. Terada, S., Nakata, T., Peterson, A. C. & Hirokawa, N. Visualization of slow axonal transport in vivo. Science 273, 784–788 ( 1996).

    Article  CAS  Google Scholar 

  30. Funakoshi, T., Takeda, S. & Hirokawa, N. Active transport of photoactivated tubulin molecules in growing axons revealed by new electron microscopic analyses. J. Cell Biol. 133, 1347–1354 (1996).

    Article  CAS  Google Scholar 

  31. Miller, K. W. & Joshi, H. C. Tubulin transport in neurons. J. Cell Biol. 133, 1355–1366 (1996).

    Article  CAS  Google Scholar 

  32. Yabe, J. T., Pimenta, A. & Shea, T. B. Kinesin-mediated transport of neurofilament protein oligomers in growing axons. J. Cell Sci. 112, 3799–3814 (1999).

    CAS  Google Scholar 

  33. Cao, L.-G. & Wang, Y.-L. Mechanism of the formation of contractile ring in dividing cultured animal cells. I. Recruitment of preexisting actin filaments into the cleavage furrow. J. Cell Biol. 110 , 1089–1095 (1990).

    Article  CAS  Google Scholar 

  34. Keating, T. J., Peloquin, J. G., Rodionov, V. I., Momcilovic, D. & Borisy, G. G. Microtubule release from the centrosome . Proc. Natl Acad. Sci. USA 94, 5078– 5083 (1997).

    Article  CAS  Google Scholar 

  35. Dent, E. W., Callaway, J. L., Szebenyi, G., Baas, P. W. & Kalil, K. Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J. Neurosci. 19, 8894–8908 (1999).

    Article  CAS  Google Scholar 

  36. Chang, S., Svitkina, T. M., Borisy, G. G. & Popov, S. V. Speckle microscopic evaluation of microtubule transport in growing nerve processes . Nature Cell Biol. 1, 399– 403 (1999).

    Article  CAS  Google Scholar 

  37. Shah, J. V., Flanagan, L. A., Janmey, P. A. & Leterrier, J.-F. Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol. Biol. Cell (In the press).

  38. Prahlad, V., Yoon, M., Moir, R. D., Vale, R. D. & Goldman, R. D. Rapid movements of vimentin on microtubule tracks: Kinesin-dependent assembly of intermediate filament networks. J. Cell Biol. 143, 159–170 (1998).

    Article  CAS  Google Scholar 

  39. Glass, J. D. & Griffin, J. W. Retrograde transport of radiolabeled cytoskeletal proteins in transected nerves. J. Neurosci. 14, 3915–3921 (1994).

    Article  CAS  Google Scholar 

  40. Koehnle, T. J. & Brown, A. Slow axonal transport of neurofilament protein in cultured neurons. J. Cell Biol. 144, 447–458 (1999).

    Article  CAS  Google Scholar 

  41. Susalka, S. J., Hancock, W. O. & Pfister, K. K. Distinct cytoplasmic dynein complexes are transported by different mechanisms in axons. Biochim. Biophys. Acta 1496, 76–88 (2000).

    Article  CAS  Google Scholar 

  42. Yabe, J. T., Jung, C. W., Chan, W. K. H. & Shea, T. B. Phospho-dependent association of neurofilament proteins with kinesin in situ. Cell Motil. Cytoskeleton 45, 249 –262 (2000).

    Article  CAS  Google Scholar 

  43. Elluru, R. G., Bloom, G. S. & Brady, S. T. Fast axonal transport of kinesin in the rat visual system: Functionality of kinesin heavy chain isoforms. Mol. Biol. Cell 6, 21–40 ( 1995).

    Article  CAS  Google Scholar 

  44. Dahlstrom, A. B., Czernik, A. J. & Li, J. Y. Organelles in fast axonal transport — what molecules do they carry in anterograde vs retrograde directions, as observed in mammalian systems. Mol. Neurobiol. 6, 157–177 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Ray Lasek and Peter Baas for stimulating discussions.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Movies of moving neurofilaments

The Brown lab page

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, A. Slow axonal transport: stop and go traffic in the axon. Nat Rev Mol Cell Biol 1, 153–156 (2000). https://doi.org/10.1038/35040102

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35040102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing