Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid movement of axonal neurofilaments interrupted by prolonged pauses

Abstract

Axonal cytoskeletal and cytosolic proteins are synthesized in the neuronal cell body and transported along axons by slow axonal transport, but attempts to observe this movement directly in living cells have yielded conflicting results. Here we report the direct observation of the axonal transport of neurofilament protein tagged with green fluorescent protein in cultured nerve cells. Live-cell imaging of naturally occurring gaps in the axonal neurofilament array reveals rapid, intermittent and highly asynchronous movement of fluorescent neurofilaments. The movement is bidirectional, but predominantly anterograde. Our data indicate that the slow rate of slow axonal transport may be the result of rapid movements interrupted by prolonged pauses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cultured sympathetic neurons exhibit naturally occurring gaps in the axonal neurofilament array.
Figure 2: Characterization of the GFP–NFM fusion protein.
Figure 3: Movement of neurofilaments through a gap in the axonal neurofilament array.
Figure 4: Analysis of moving filaments.

Similar content being viewed by others

References

  1. Lasek, R. J., Garner, J. A. & Brady, S. T. Axonal transport of the cytoplasmic matrix. J. Cell Biol. 99, 212s–221s (1984).

    Article  CAS  Google Scholar 

  2. Keith, C. H. Slow transport of tubulin in the neurites of differentiated PC 12 cells. Science 235, 337–339 ( 1987).

    Article  CAS  Google Scholar 

  3. Lim, S.-S., Sammak, P. J. & Borisy, G. G. Progressive and spatially differentiated stability of microtubules in developing neuronal cells. J. Cell Biol. 109, 253–263 (1989).

    Article  CAS  Google Scholar 

  4. Lim, S.-S., Edson, K. J., Letourneau, P. C. & Borisy, G. G. A test of microtubule translocation during neurite elongation. J. Cell Biol. 111, 123–130 (1990).

    Article  CAS  Google Scholar 

  5. Sabry, J., O’Connor, T. P. & Kirschner, M. W. Axonal transport of tubulin in Ti 1 pioneer neurons in situ. Neuron 14, 1247 –1256 (1995).

    Article  CAS  Google Scholar 

  6. Takeda, S., Funakoshi, T. & Hirokawa, N. Tubulin dynamics in neuronal axons of living zebrafish embryos. Neuron 14, 1257– 1264 (1995).

    Article  CAS  Google Scholar 

  7. Okabe, S. & Hirokawa, N. Turnover of fluorescently labelled tubulin and actin in the axon. Nature 343, 479–482 (1990).

    Article  CAS  Google Scholar 

  8. Okabe, S. & Hirokawa, N. Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons. J. Cell Biol. 117, 105–120 ( 1992).

    Article  CAS  Google Scholar 

  9. Okabe, S., Miyasaka, H. & Hirokawa, N. Dynamics of the neuronal intermediate filaments. J. Cell Biol. 121, 375–386 (1993).

    Article  CAS  Google Scholar 

  10. Takeda, S., Okabe, S., Funakoshi, T. & Hirokawa, N. Differential dynamics of neurofilament-H protein and neurofilament-L protein in neurons . J. Cell Biol. 127, 173– 185 (1994).

    Article  CAS  Google Scholar 

  11. Reinsch, S. S., Mitchison, T. J. & Kirschner, M. W. Microtubule polymer assembly and transport during axonal elongation. J. Cell Biol. 115, 365 –379 (1991).

    Article  CAS  Google Scholar 

  12. Okabe, S. & Hirokawa, N. Do photobleached fluorescent microtubules move? Re-evaluation of fluorescence laser photobleaching both in vitro and in growing Xenopus axons. J. Cell Biol. 120, 1177–1186 (1993).

    Article  CAS  Google Scholar 

  13. Chang, S. H., Rodionov, V. I., Borisy, G. G. & Popov, S. V. Transport and turnover of microtubules in frog neurons depend on the pattern of axonal growth. J. Neurosci. 18, 821– 829 (1998).

    Article  CAS  Google Scholar 

  14. Tanaka, E. M. & Kirschner, M. W. Microtubule behavior in the growth cones of living neurons during axon elongation. J. Cell Biol. 115, 345–363 ( 1991).

    Article  CAS  Google Scholar 

  15. Dent, E. W., Callaway, J. L., Szebenyi, G., Baas, P. W. & Kalil, K. Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J. Neurosci. 19, 8894–8908 (1999).

    Article  CAS  Google Scholar 

  16. Chang, S., Svitkina, T. M., Borisy, G. G. & Popov, S. V. Speckle microscopic evaluation of microtubule transport in growing nerve processes . Nature Cell Biol. 1, 399– 403 (1999).

    Article  CAS  Google Scholar 

  17. Baas, P. W. & Brown, A. Slow axonal transport: the polymer transport model. Trends Cell Biol. 7, 380 –384 (1997).

    Article  CAS  Google Scholar 

  18. Hirokawa, N., Terada, S., Funakoshi, T. & Takeda, S. Slow axonal transport: the subunit transport model. Trends Cell Biol. 7, 384–388 ( 1997).

    Article  CAS  Google Scholar 

  19. Bray, D. The riddle of slow transport — an introduction. Trends Cell Biol. 7, 379–379 ( 1997).

    Article  CAS  Google Scholar 

  20. Brown, A. Visualization of single neurofilaments by immunofluorescence microscopy of splayed axonal cytoskeletons. Cell Motil. Cytoskeleton 38, 133–145 (1997).

    Article  CAS  Google Scholar 

  21. Ohara, O., Gahara, Y., Miyake, T., Teraoka, H. & Kitamura, T. Neurofilament deficiency in quail caused by nonsense mutation in neurofilament-L gene. J. Cell Biol. 121 , 387–395 (1993).

    Article  CAS  Google Scholar 

  22. Zhu, Q., Couillard-Despres, S. & Julien, J.-P. Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp. Neurol. 148, 299–316 (1997).

    Article  CAS  Google Scholar 

  23. Black, M. M., Keyser, P. & Sobel, E. Interval between the synthesis and assembly of cytoskeletal proteins in cultured neurons. J. Neurosci. 6, 1004–1012 (1986).

    Article  CAS  Google Scholar 

  24. Ching, G. Y. & Liem, R. K. Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J. Cell Biol. 122, 1323– 1335 (1993).

    Article  CAS  Google Scholar 

  25. Lee, M. K., Xu, Z., Wong, P. C. & Cleveland, D. W. Neurofilaments are obligate heteropolymers in vivo. J. Cell Biol. 122, 1337–1350 (1993).

    Article  CAS  Google Scholar 

  26. Yabe, J. T., Pimenta, A. & Shea, T. B. Kinesin-mediated transport of neurofilament protein oligomers in growing axons. J. Cell Sci. 112, 3799–3814 (1999).

    CAS  PubMed  Google Scholar 

  27. Lasek, R. J. & Hoffman, P. N. in Cell Motility (eds Goldman, R., Pollard, T. & Rosenbaum, J.) 1021–1049 (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1976).

    Google Scholar 

  28. Lasek, R. J., Paggi, P. & Katz, M. J. The maximum rate of neurofilament transport in axons: a view of molecular transport mechanisms continuously engaged. Brain Res. 616, 58–64 ( 1993).

    Article  CAS  Google Scholar 

  29. Lasek, R. J., Paggi, P. & Katz, M. J. Slow axonal transport mechanisms move neurofilaments relentlessly in mouse optic axons. J. Cell Biol. 117, 607–616 (1992).

    Article  CAS  Google Scholar 

  30. Koehnle, T. J. & Brown, A. Slow axonal transport of neurofilament protein in cultured neurons. J. Cell Biol. 144, 447–458 (1999).

    Article  CAS  Google Scholar 

  31. Napolitano, E. W., Chin, S. S., Colman, D. R. & Liem, R. K. Complete amino acid sequence and in vitro expression of rat NF-M, the middle molecular weight neurofilament protein. J. Neurosci. 7, 2590–2599 (1987).

    CAS  PubMed  Google Scholar 

  32. Garcia, I., Martinou, I., Tsujimoto, Y. & Martinou, J. C. Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene . Science 258, 302–304 (1992).

    Article  CAS  Google Scholar 

  33. Mikhailov, A. V. & Gundersen, G. G. Centripetal transport of microtubules in motile cells. Cell Motil. Cytoskeleton 32, 173–186 ( 1995).

    Article  CAS  Google Scholar 

  34. George, E. B., Schneider, B. F., Lasek, R. J. & Katz, M. J. Axonal shortening and the mechanisms of axonal motility. Cell Motil. Cytoskeleton 9, 48–59 ( 1988).

    Article  CAS  Google Scholar 

  35. Brown, A., Slaughter, T. & Black, M. M. Newly assembled microtubules are concentrated in the proximal and distal regions of growing axons. J. Cell Biol. 119, 867–882 ( 1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.J. Lasek, D.L. Holzschu, E.W. Dent and P.W. Baas for help and advice; V.M.-Y. Lee for providing the anti-NFL antibody; and S. Aizicovici for technical assistance. This work was funded by grants from the National Institute of Neurological Disorders and Stroke to A.B. and R.K.H.L.

Correspondence and requests for materials should be addressed to A.B.

Supplementary information is available on Nature Cell Biology’s World-Wide Web site (http://www.nature.com/ncb).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Brown.

Supplementary information

Supplementary movies These two time-lapse movies show anterograde movement of fluorescent neurofilaments through naturally occurring gaps in the axonal neurofilament array of cultured rat sympathetic neurons. The filaments move rapidly but infrequently, and the movement is highly asynchronous. These movies have been compressed using a lossy compression algorithm to facilitate downloading.

Movie 1 Anterograde movement of four neurofilaments within a naturally occurring gap in the axonal neurofilament array. The movie starts with a short neurofilament in the gap, which moves rapidly out of the gap in an anterograde direction (0–20 s). A second neurofilament moves rapidly through the gap (35–65 s). A third neurofilament moves rapidly into the gap (140–155 s) and then pauses for the remainder of the movie, causing the gap to become narrower. A fourth neurofilament moves rapidly past the third neurofilament (220–235 s) and then also pauses for the remainder of the movie, causing the gap to narrow even further. Images were acquired at 5-s intervals. Time compression=30:1. The first 13 frames (0–60 s) of this movie are shown in Fig. 3 of the paper. (MOV 1625 kb)

41556_2000_BFncb0300_137_MOESM2_ESM.mov

Movie 2 Anterograde movement of two neurofilaments within a naturally occurring gap in the axonal neurofilament array. The movie starts with a neurofilament that moves anterogradely in a slow and intermittent manner (0–36 s), then in a rapid and continuous manner (36–56 s), and then in a slow and intermittent manner again for the remainder of the movie. A second ,shorter neurofilament moves rapidly through the gap and past the first filament without pausing (96–136 s). Images were acquired at 4-s intervals. Time compression=24:1. (MOV 613 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Ho, Cl., Sun, D. et al. Rapid movement of axonal neurofilaments interrupted by prolonged pauses . Nat Cell Biol 2, 137–141 (2000). https://doi.org/10.1038/35004008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35004008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing