Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin

Abstract

The cellular mechanisms by which the axons of individual neurons achieve their precise terminal branching patterns are poorly understood. In the visual system of adult cats, retinal ganglion cell axons from each eye form narrow cylindrical terminal arborizations restricted to alternate non-overlapping layers within the lateral geniculate nucleus (LGN)1–3. During prenatal development, axon arborizations from the two eyes are initially simple in shape and are intermixed with each other; they then gradually segregate to form complex adult-like arborizations in separate eye-specific layers by birth4,5. Here we report that ganglion cell axons exposed to tetrodotoxin (TTX) to block neuronal activity during fetal life fail to form the normal pattern of terminal arborization. Individual TTX-treated axon arborizations are not stunted in their growth, but instead produce abnormally widespread terminal arborizations which extend across the equivalent of approximately two eye-specific layers. These observations suggest that during fetal development of the central nervous system, the formation of morphologically appropriate and correctly located axon terminal arborizations within targets is brought about by an activity-dependent process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hickey, T. L. & Guillery, R. W. J. comp. Neurol. 156, 239–254 (1974).

    Article  CAS  Google Scholar 

  2. Sur, M. & Sherman, S. M. Science 218, 389–391 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Bowling, D. B. & Michael, C. R. J. Neurosci. 4, 198–216 (1984).

    Article  CAS  Google Scholar 

  4. Shatz, C. J. J. Neurosci. 3, 482–499 (1983).

    Article  CAS  Google Scholar 

  5. Sretavan, D. W. & Shatz, C. J. J. Neurosci. 6, 234–251 (1986).

    Article  CAS  Google Scholar 

  6. Shatz, C. J. & Stryker, M. P. Science 242, 87–89 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Foster, R. E., Connors, B. E. & Waxman, S. G. Devl Brain Res. 3, 371–386 (1982).

    Article  Google Scholar 

  8. Stryker, M. P. & Harris, W. J. Neurosci. 6, 2117–2133 (1986).

    Article  CAS  Google Scholar 

  9. Sanderson, K. J. J. Comp. Neurol. 143, 101–118 (1971).

    Article  CAS  Google Scholar 

  10. Schmidt, J. T. & Tieman, S. B. Cell. Molec. Neurobiol. 5, 5–35 (1985).

    Article  CAS  Google Scholar 

  11. Dubin, M. W., Stark, L. A. & Archer, S. M. J. Neurosci. 6, 1021–1036 (1986).

    Article  CAS  Google Scholar 

  12. Reh, T. A. & Constantine-Paton, M. J. Neurosci. 5, 1132–1143 (1985).

    Article  CAS  Google Scholar 

  13. Ricco, R. V. & Matthews, M. A. Neuroscience 16, 1027–1039 (1985).

    Article  Google Scholar 

  14. Cohan, C. S. & Kater, S. B. Science 232, 1638–1640 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Lipton, S. A., Frosch, M. P., Phillips, M. D., Tauck, D. L. & Aizenman, E. Science 239, 1293–1296 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Law, M. I. & Constantine-Paton, M. J. Neurosci. 1, 741–759 (1981).

    Article  CAS  Google Scholar 

  17. Donovan, A. J. Comp. Neurol. exp. Eye Res. 5, 249–254 (1966).

    Article  CAS  Google Scholar 

  18. Shatz, C. J. & Kirkwood, P. A. J. Neurosci. 5, 1378–1397 (1984).

    Article  Google Scholar 

  19. Galli, L. & Maffei, L. Science 242, 90–91 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Sretavan, D. W. & Shatz, C. J. J. Comp. Neurol. 255, 386–400 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom reprint requests should be sent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sretavan, D., Shatz, C. & Stryker, M. Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin. Nature 336, 468–471 (1988). https://doi.org/10.1038/336468a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336468a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing