Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins

Abstract

Plasma membrane receptors for hormones, drugs, neurotransmit-ters and sensory stimuli are coupled to guanine nucleotide regulatory proteins. Recent cloning of the genes and/or cDNAs for several of these receptors including the visual pigment rhodopsin1, the adenylate-cyclase stimulatory β-adrenergic receptor2–4 and two subtypes of muscarinic cholinergic receptors5,6 has suggested that these are homologous proteins with several conserved structural and functional features. Whereas the rhodopsin gene consists of five exons interrupted by four introns1, surprisingly the human and hamster β-adrenergic receptor genes contain no introns in either their coding or untranslated sequences7. We have cloned and sequenced a DNA fragment in the human genome which cross-hybridizes with a full-length β2-adrenergic receptor probe at reduced stringency. Like the β2-adrenergic receptor this gene appears to be intronless, containing an uninterrupted long open reading frame which encodes a putative protein with all the expected structural features of a G-protein-coupled receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nathans, J. & Hogness, D. S. Proc. natn. Acad. Sci. U.S.A. 81, 4851–4855 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Dixon, R. A. F. et al. Nature 321, 75–79 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Kobilka, B. K. et al. Proc. natn. Acad. Sci. U.S.A. 84, 46–50 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Yarden, Y. et al. Proc. natn. Acad. Sci. U.S.A. 83, 6795–6799 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Kubo, T. et al. Nature 323, 411–416 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Kubo, T. et al. FEBS Lett. 209, 367–372 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Kobilka, B. K. et al. J. biol. Chem. 262, 7321–7327 (1987).

    CAS  PubMed  Google Scholar 

  8. Baas, F., Bilker, H., Van Ommen, G.-J.B. & de Vijlder, J. J. M. Hum. Genet. 67, 301–305 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. de Martinville, B., Wyman, A. R., White, R. & Francke, U. Am. J. hum. Genet. 34, 216–26 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Harper, M. E. & Saunders, G. F. Chromosoma 83, 431–439 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Yang-Feng, T. L., Floyd-Smith, G., Nemer, M., Drouin, J. & Francke, U. Am. J. hum. Genet. 37, 1117–1128 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. de la Chapelle, A. (ed.) Cytogenet. Cell Genet. 40, (8th Int. Workshop Gene mapping) (Karger, Basle, 1985).

  13. Vanin, E. F. A. Rev. Genet. 19, 253–272 (1985).

    Article  CAS  Google Scholar 

  14. Hamer, D. H. & Leder, P. Cell 18, 1299–1302 (1979).

    Article  CAS  PubMed  Google Scholar 

  15. Volckaert, G., Feunteun, J., Crawford, L. V., Berg, P. & Fiers, W. J. J. Virol. 30, 674–682 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gilbert, W., Marchionni, M. & McKnight, G. Cell 46, 151–154 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Feinberg, A. P. & Vogelstein, B. Analyt. Biochem. 132, 6–13 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Chirgwin, J. M., Przybyla, A. E., McDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  PubMed  Google Scholar 

  20. McMaster, G. K. & Carmichael, G. C. Proc. natn. Acad. Sci. U.S.A. 74, 4835–4838 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Aziz, N. & Munro, H. N. Nucleic Acids Res. 14, 915–927 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maniatis, T., Jeffrey, A. & Kleid, D. G. Proc. natn. Acad. Sci. U.S.A. 72, 1184–1188 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Melton, D. W., McEwan, C., McKie, A. B. & Reid, A. M. Cell 44, 319–328 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobilka, B., Frielle, T., Collins, S. et al. An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins . Nature 329, 75–79 (1987). https://doi.org/10.1038/329075a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329075a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing