Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance

Abstract

Recent studies have emphasized the role of acetylcholine (ACh) as an excitatory modulator of neuronal activity in mammalian cortex1–5 and hippocampus6–9. Much less is known about the mechanism of direct cholinergic inhibition in the central nervous system or its role in regulating neuronal activities. Here we report that application of ACh to thalamic nucleus reticularis (nRt) neurones, which are known to receive a cholinergic input from the ascending reticular system of the brain stem10,11, causes a hyperpolarization due to a relatively small (1–4 nS) increase in membrane conductance to K+. This cholinergic action appears to be mediated by the M2 subclass of muscarinic receptors and acts in conjunction with the intrinsic membrane properties of nucleus reticularis neurones to inhibit single spike activity while promoting the occurrence of burst discharges. Thus, cholinergic inhibitory mechanisms may be important in controlling the firing pattern of this important group of thalamic neurones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Constanti, A. & Galvan, M. Neurosci. Lett. 39, 65–70 (1983).

    Article  CAS  Google Scholar 

  2. fffrench-Mullen, J. M. H., & Nori, H., Nakanishi, H., Slater, N. T. & Carpenter, D. O. Cell. molec. Neurobiol. 3, 163–181 (1983).

    Article  Google Scholar 

  3. Krnjevic, K., Pumain, R. & Renaud, L. J. Physiol. Lond. 215, 447–465 (1971).

    Google Scholar 

  4. McCormick, D. A. & Prince, D. A. Proc. natn. Acad. Sci U.S.A. 82, 6344–6348 (1985).

    Article  ADS  CAS  Google Scholar 

  5. McCormick, D. A. & Prince, D. A. J. Physiol., Lond. (in the press).

  6. Bernardo, L. S. & Prince, D. A. Brain Res. 249, 315–333 (1982).

    Article  Google Scholar 

  7. Bernardo, L. S. & Prince, D. A. Brain Res. 249, 334–344 (1982).

    Google Scholar 

  8. Cole, A. E. & Nicoll, R. A. J. Physiol., Lond. 352, 173–188 (1984).

    Article  CAS  Google Scholar 

  9. Halliwell, J. V. & Adams, P. R. Brain Res. 250, 71–92 (1982).

    Article  CAS  Google Scholar 

  10. Fibiger, H. C. Brain Res. Rev. 4, 327–388 (1982).

    Article  Google Scholar 

  11. Mesulam, M.-M., Mufson, E. J., Wainer, B. H. & Levey, A. I. Neuroscience 10, 1185–1201 (1983).

    Article  CAS  Google Scholar 

  12. Jahnsen, H. & Llinas, R. J. Physiol., Lond. 349, 205–226 (1984).

    Article  CAS  Google Scholar 

  13. Jahnsen, H. & Llinas, R. J. Physiol., Lond. 349, 227–247 (1984).

    Article  CAS  Google Scholar 

  14. Ben-Ari, Y., Dingledine, R., Kanazawa, I. & Kelly, J. S. J. Physiol., Lond. 261, 647–671 (1976).

    Article  CAS  Google Scholar 

  15. Hammer, R., Birdsall, N. J. M., Burgen, A. S. V. & Hulme, E. C. Nature 283, 90–92 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Birdsall, N. J. M., Hulme, E. C. & Stockton, J. M. Trends pharmac. Sci. Suppl., 4–8 (1983).

  17. Wamsley, J. K., Zarbin, M. A. & Kuhar, M. J. Brain Res. Bull. 12, 233–243 (1984).

    Article  CAS  Google Scholar 

  18. Deisz, R. A. & Lux, H. D. J. Physiol. Lond. 326, 123–138 (1982).

    Article  CAS  Google Scholar 

  19. Houser, C. R., Vaughn, J. E., Barber, R. P. & Roberts, E. Brain Res. 200, 341–354 (1980).

    Article  CAS  Google Scholar 

  20. Steriade, M. & Deschenes, M. Brain Res. Rev. 8, 1–63 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormick, D., Prince, D. Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance. Nature 319, 402–405 (1986). https://doi.org/10.1038/319402a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319402a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing