Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells

Abstract

Ample evidence exists for histaminergic1 and noradrenergic2,3 projections to the hippocampus. Both amines exert neurotransmitter or modulator actions on principal neurones in the CA 1 and in the dentate area. A number of mechanisms have been proposed for these actions, including increased potassium conductance4, increased chloride conductance and electrogenic pump stimulation5,6, and reduction of the anomalous inward rectification5. Action potentials, and particularly bursts of spikes, in CA 1 pyramidal cells, are followed by an afterhyper-polarization (AHP) which consists of two components7. The late AHP depends on a calcium-activated potassium conductance gK+ (Ca2+)8–13, and has recently been shown to be increased by dopamine14. We report here a rapid and reversible decrease of the late AHP component following a burst of sodium spikes or a calcium spike, during perfusion with micromotor concentrations of histamine and noradrenaline2. This effect is mediated by H2 receptors and β-receptors, respectively, and occurred in the absence of changes in the calcium spike. By such a mechanism histamine and noradrenaline can profoundly potentiate the excitatory impact of depolarizing signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schwartz, J. C. A. Rev. Pharmac. Tox. 17, 325–339 (1974).

    Article  Google Scholar 

  2. Ungerstedt, U. Actaphysiol. scand., Suppl. 367, 1–48 (1971).

    CAS  Google Scholar 

  3. Segal, M. & Bloom, F. E. Brain Res. 72, 99–113 (1974).

    Article  CAS  Google Scholar 

  4. Haas, H. L. Neurosci. Lett. 22, 75–78 (1981).

    Article  CAS  Google Scholar 

  5. Langmoen, I. A., Segal, M. & Andersen, P. Brain Res. 208, 349–362 (1981).

    Article  CAS  Google Scholar 

  6. Segal, M. Brain Res. 206, 107–128 (1981).

    Article  CAS  Google Scholar 

  7. Gustafsson, B. & Wigstroem, H. Brain Res. 206, 462–468 (1981).

    Article  CAS  Google Scholar 

  8. Alger, B. E. & Nicoll, R. A. Science 210, 1122–1124 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Heyer, C. B. & Lux, H. D. J. Physiol., Lond. 262, 349–382 (1976).

    Article  CAS  Google Scholar 

  10. Hotson, J. R. & Prince, D. A. J. Neurophysiol. 43, 409–419 (1980).

    Article  CAS  Google Scholar 

  11. Meech, R. W. A. Rev. Biophys. Bioengng 7, 1–18 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Meech, R. W. & Standen, N. B. J. Physiol., Lond. 249, 211–239 (1975).

    Article  CAS  Google Scholar 

  13. Schwartzkroin, P. A. & Stafstrom, C. E. Science 210, 1125–1127 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Benardo, L. S. & Prince, D. A. Nature 297, 76–79 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Haas, H. L., Schaerer, B. & Vosmansky, M. J. Neurosci. Meth. 1, 323–325 (1979).

    Article  CAS  Google Scholar 

  16. Schwartzkroin, P. A. & Slawsky, M. Brain Res. 135, 157–161 (1977).

    Article  CAS  Google Scholar 

  17. Haas, H. L. & Gaehwiler, B.H. Neurosci. Lett. 19, 89–92 (1980).

    Article  CAS  Google Scholar 

  18. Alger, B. E. & Nicoll, R. A. Brain Res. 200, 195–200 (1980).

    Article  CAS  Google Scholar 

  19. Haas, H. L. & Rose, G. J. Physiol., Lond. 329, 541–552 (1982).

    Article  CAS  Google Scholar 

  20. Segal, M. Neurosci. Lett. 19, 67–71 (1980).

    Article  CAS  Google Scholar 

  21. Cottrell, G. A. Nature 296, 87–89 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Frederickson, R. C. A., Jordan, L. M. & Phillis, J. W. Brain Res. 35, 556–560 (1971).

    Article  CAS  Google Scholar 

  23. Haas, H. L. & Wolf, P. Brain Res. 122, 269–279 (1977).

    Article  CAS  Google Scholar 

  24. Krnjević, K., Lamour, Y., MacDonald, J. F. & Nistri, A. Can. J. Physiol. Pharmac. 56, 896–900 (1978).

    Article  Google Scholar 

  25. Mueller, A. L., Hoffer, B. J. & Dunwiddie, T. V. Brain Res. 214, 113–126 (1981).

    Article  CAS  Google Scholar 

  26. Madison, D. V. & Nicoll, R. A. Nature 299, 636–638 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Haas, H. L., Wolf, P., Palacios, J. M., Garbarg, M., Barbin, G. & Schwartz, J. C. Brain Res. 156, 275–291 (1978).

    Article  CAS  Google Scholar 

  28. Palmer, G. C., Sulser, F. & Robison, G. A. Neuropharmacology 12, 327–337 (1973).

    Article  CAS  Google Scholar 

  29. Segal, M., Greenberger, V. & Hofstein, R. Brain Res. 213, 351–364 (1981).

    Article  CAS  Google Scholar 

  30. Hotson, J. R., Prince, D. A. & Schwartzkroin, P. A. J. Neurophysiol. 42, 889–895 (1979).

    Article  CAS  Google Scholar 

  31. Woodward, D. J., Moises, H. C., Waterhouse, B. D., Hoffer, B. J. & Freedman, R. Fedn Proc. 38, 2109–2116 (1979).

    CAS  Google Scholar 

  32. Rogawski, M. A. & Aghajanian, G. K. Nature 287, 731–734 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, H., Konnerth, A. Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells. Nature 302, 432–434 (1983). https://doi.org/10.1038/302432a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302432a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing