Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons

Abstract

A single visual stimulus activates neurons in many different cortical areas. A major challenge in cortical physiology is to understand how the neural activity in these numerous active zones leads to a unified percept of the visual scene. The anatomical basis for these interactions is the dense network of connections that link the visual areas. Within this network, feedforward connections transmit signals from lower-order areas such as V1 or V2 to higher-order areas. In addition, there is a dense web of feedback connections which, despite their anatomical prominence1,2,3,4, remain functionally mysterious5,6,7,8. Here we show, using reversible inactivation of a higher-order area (monkey area V5/MT), that feedback connections serve to amplify and focus activity of neurons in lower-order areas, and that they are important in the differentiation of figure from ground, particularly in the case of stimuli of low visibility. More specifically, we show that feedback connections facilitate responses to objects moving within the classical receptive field; enhance suppression evoked by background stimuli in the surrounding region; and have the strongest effects for stimuli of low salience.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of V5 inactivation on responses of neurons in areas V1, V2, V3.
Figure 2: Effect of bar salience.
Figure 3: Effect of V5 inactivation on foreground–background interactions in V3 neurons.

Similar content being viewed by others

References

  1. Salin, P.-A. & Bullier, J. Corticocortical connections in the visual system: structure and function. Physiol. Rev. 75, 107–154 (1995).

    Article  CAS  Google Scholar 

  2. Kennedy, H. & Bullier, J. Adouble-labelling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey. J. Neurosci. 5, 2815–2830 (1985).

    Article  CAS  Google Scholar 

  3. Perkel, D. J., Bullier, J. & Kennedy, H. Topography of the afferent connectivity of area 17 of the macaque monkey: a double-labelling study. J. Comp. Neurol. 253, 374–402 (1986).

    Article  CAS  Google Scholar 

  4. Shipp, S. & Zeki, S. The organization of connections between areas V5 and V2 in macaque monkey visual cortex. Eur. J. Neurosci. 1, 333–354 (1989).

    Article  CAS  Google Scholar 

  5. Alonso, J. M., Cudeiro, J., Pérez, R., Gonzales, F. & Acuna, C. Influence of layer 5 of area 18 of the cat visual cortex on responses of cells in layer 5 of area 17 to stimuli of high velocity. Exp. Brain Res. 93, 363–366 (1993).

    Article  CAS  Google Scholar 

  6. Sandell, J. H. & Schiller, P. H. Effect of cooling area 18 on striate cortex cells in the squirrel monkey. J. Neurophysiol. 48, 38–48 (1982).

    Article  CAS  Google Scholar 

  7. Vanduffel, W., Payne, B. R., Lomber, S. G. & Orban, G. A. Functional impact of cerebral connections. Proc. Natl Acad. Sci. USA 94, 7617–7620 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Mignard, M. & Malpeli, J. G. Paths of information flow through visual cortex. Science 251, 1249–1251 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Felleman, D. J., Burkhalter, A. & Van Essen, D. C. Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex. J. Comp. Neurol. 379, 21–47 (1997).

    Article  CAS  Google Scholar 

  10. Salin, P. A., Girard, P., Kennedy, H. & Bullier, J. The visuotopic organization of corticocortical connections in the visual system of the cat. J. Comp. Neurol. 320, 415–434 (1992).

    Article  CAS  Google Scholar 

  11. Nelson, J. I. & Frost, B. J. Orientation-selective inhibition from beyond the classic visual receptive field. Brain Res. 139, 359–365 (1978).

    Article  CAS  Google Scholar 

  12. Li, C.-Y. & Li, W. Extensive integration of field beyond the classical receptive field of cat's striate cortical neurons-classification and tuning properties. Vision Res. 34, 2337–55 (1994).

    Article  CAS  Google Scholar 

  13. Levitt, J. B. & Lund, J. S. Contrast dependence of contextual effects in primate visual cortex. Nature 387, 73–76 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Pasternak, T. & Merigan, W. H. Motion perception following lesions of the superior temporal sulcus in the monkey. Cerebr. Corte 4, 247–259 (1994).

    Article  CAS  Google Scholar 

  15. Newsome, W. T. & Pare, E. B. Aselective impairment of motion processing following lesions of the middle temporal visual area (MT). J. Neurosci. 8, 220–2211 (1988).

    Article  Google Scholar 

  16. Shipp, S. & Zeki, S. The organization of connections between areas V5 and V1 in macaque monkey visual cortex. Eur. J. Neurosci. 1, 308–331 (1989).

    Google Scholar 

  17. Johnson, R. R. & Burkhalter, A. Microcircuitry of forward and feedback connections within rat visual cortex. J. Comp. Neurol. 368, 383–398 (1996).

    Article  CAS  Google Scholar 

  18. Girard, P., Salin, P. A. & Bullier, J. Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. J. Neurophysiol. 67, 1–10 (1992).

    Article  Google Scholar 

  19. Bullier, J., Girard, P. & Salin, P. A. in Primary Visual Cortex in Primates(eds Peters, A. & Rockland, K. S.) 301–330 (Plenum Pub. Corp., (1994)).

    Book  Google Scholar 

  20. Rodman, H. R., Gross, C. G. & Albright, T. D. Afferent basis of visual response properties in area MT of the macaque: I. Effects of striate cortex removal. J. Neurosci. 9, 2033–2050 (1989).

    Article  CAS  Google Scholar 

  21. Nowak, L. G., Munk, M. H. J., Girard, P. & Bullier, J. Visual Latencies in Areas V1 and V2 of the Macaque Monkey. Vis. Neurosci. 12, 371–384 (1995).

    Article  CAS  Google Scholar 

  22. DeYoe, E. A., Hockfield, S., Garren, H. & Essen, D. C. V. Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey. Vis. Neurosci. 5, 67–81 (1990).

    Article  CAS  Google Scholar 

  23. Lomber, S. G., Payne, B. R. & Cornwell, P. Learnign and recall of form-discriminations during reversible cooling deactivation of ventral-posterior suprasylvaian cortex in the cat. Proc. Natl Acad. Sci. USA 93, 1654–1658 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Polyak, S. The Vertebrate Visual System(Chicago Univ. Press, (1957)).

    Google Scholar 

  25. Bénita, M. & Condé, H. Effects of local cooling upon conduction and synaptic transmission. Brain Res. 36, 133–151 (1972).

    Article  Google Scholar 

  26. Brooks, V. B. Study of brain function by local, reversible cooling. Rev. Physiol. Biochem. Pharmacol. 95, 1–109 (1983).

    Article  Google Scholar 

  27. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap(Chapman & Hall, New York, (1993)).

    Book  Google Scholar 

Download references

Acknowledgements

We thank Henry Kennedy, Ken Knoblauch, Jonathan Levitt and Matthias Munk for fruitful discussions and a careful reading of the manuscript, and Susan Hockfield for providing us the CAT301 antibody. This work was supported by NIH, NATO, Biomed, and GIS contract ‘Perception visuelle’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bullier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hupé, J., James, A., Payne, B. et al. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394, 784–787 (1998). https://doi.org/10.1038/29537

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29537

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing