Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Projection patterns of single physiologically characterized optic tract fibres in cat

Abstract

Because the axons of retinal ganglion cells are the sole channels carrying information from the eye, the organization of their central projections is important in visual processing. However, their detailed destinations and patterns of synaptic distribution at the level of single, functionally identified cells are not known. Most anatomical studies involve populations of cells or fibres and do not examine their physiological properties; physiological studies involving intraceliular recording and injection of marker substances into cell bodies1–3 of single cells do not reveal distant axon terminals because the markers stain the fibres for only a few millimetres from the perikarya. To examine the central projections of retinal ganglion cells we have impaled single optic tract fibres near their sites of termination4,5 and injected them iontophoretically with the marker enzyme horseradish peroxidase (HRP). We now report that this method has revealed the thalamic and midbrain ramifications of single physiologically characterized axons. The individual optic-tract fibres branch repeatedly, sending collaterals to the superior colliculus (SC), the medial interlaminar nucleus (MIN), and to one or more laminae within the dorsal lateral geniculate nucleus (LGNd). In different nuclei the single axons form arborizations of characteristically different shapes and distribute their synaptic terminals in columns (LGNd), sheets (MIN) or widely spread patches (SC).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Muller, K. J. & McMahan, U. J. Proc. R. Soc. B194, 481–499 (1976).

    ADS  CAS  Google Scholar 

  2. Jankowska, E., Rastad, J. & Westman, J. Brain Res. 105, 562–577 (1976).

    Article  Google Scholar 

  3. Snow, P. J., Rose, P. K. & Brown, A. G. Science 191, 312–321 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Brown, A. G., Rose, P. K. & Snow, P. J. J. Physiol., Lond. 263, 132P–134P (1976).

    CAS  PubMed  Google Scholar 

  5. Gilbert, C. D. & Wiesel, T. N. Nature 280, 120–125 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Michael, C. R. J. Neurophysiol. 41, 572–588 (1978).

    Article  CAS  Google Scholar 

  7. Adams, J. C. Neuroscience 2, 141–145 (1977).

    Article  CAS  Google Scholar 

  8. Malmgren, L. & Olsson, Y. Brain Res. 148, 279–294 (1978).

    Article  CAS  Google Scholar 

  9. Cleland, B. G. & Levick, W. R. J. Physiol., Lond. 240, 421–456 (1974).

    Article  CAS  Google Scholar 

  10. Stone, J. & Fukuda, Y. J. Neurophysiol. 37, 722–748 (1974).

    Article  CAS  Google Scholar 

  11. Enroth-Cugell, C. & Robson, J. G. J. Physiol., Lond. 187, 517–552 (1966).

    Article  CAS  Google Scholar 

  12. Hochstein, S. & Shapley, R. M. J. Physiol., Lond. 262, 237–264 (1976).

    Article  CAS  Google Scholar 

  13. Hamasaki, D. I. & Sujita . Expl Brain Res. 35, 25–36 (1979).

    CAS  Google Scholar 

  14. Mason, C. A. & Robson, J. A. Neuroscience 4, 79–97, 99–111 (1979).

    Article  CAS  Google Scholar 

  15. Guillery, R. W. J. comp. Neurol. 138, 339–368 (1970).

    Article  Google Scholar 

  16. Bishop, P. O., Kozak, W., Levick, W. R. & Vakkur, G. J. Physiol., Lond. 163, 503–539 (1962).

    Article  CAS  Google Scholar 

  17. Sanderson, K. J. Expl Brain Res. 13, 159–177 (1971); J. comp. Neurol. 143, 101–118 (1971).

    CAS  Google Scholar 

  18. Mitzdorf, J. & Singer, W. J. Neurophysiol. 40, 1227–1244 (1977).

    Article  CAS  Google Scholar 

  19. Hubel, D. H. & Weisel, T. N. J. comp. Neurol. 158, 295–305 (1974).

    Article  CAS  Google Scholar 

  20. Kinston, W. J., Vadas, M. A. & Bishop, P. O. J. comp. Neurol. 136, 295–316 (1969).

    Article  CAS  Google Scholar 

  21. Graybiel, A. Brain Res. 114, 318–327 (1976); Nature 272, 539–541 (1978).

    Article  CAS  Google Scholar 

  22. Tello, F. Lab. Invest. Biol. Univ. Madrid 3, 39–62 (1904).

    Google Scholar 

  23. Kalil, R. Comp. Neurol. 182, 265–292 (1978).

    Article  CAS  Google Scholar 

  24. Hendrickson, A. & Rakic, P. Anat. Rec. 187, 602 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowling, D., Michael, C. Projection patterns of single physiologically characterized optic tract fibres in cat. Nature 286, 899–902 (1980). https://doi.org/10.1038/286899a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/286899a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing