Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Temporal dynamics of chromatic tuning in macaque primary visual cortex

Abstract

The ability to distinguish colour from intensity variations is a difficult computational problem for the visual system because each of the three cone photoreceptor types absorb all wavelengths of light, although their peak sensitivities are at relatively short (S cones), medium (M cones), or long (L cones) wavelengths. The first stage in colour processing is the comparison of the outputs of different cone types by spectrally opponent neurons in the retina and upstream in the lateral geniculate nucleus1,2,3. Some neurons receive opponent inputs from L and M cones, whereas others receive input from S cones opposed by combined signals from L and M cones. Here we report how the outputs of the L/M- and S-opponent geniculate cell types are combined in time at the next stage of colour processing, in the macaque primary visual cortex (V1). Some V1 neurons respond to a single chromatic region, with either a short (68–95 ms) or a longer (96–135 ms) latency, whereas others respond to two chromatic regions with a difference in latency of 20–30 ms. Across all types, short latency responses are mostly evoked by L/M-opponent inputs whereas longer latency responses are evoked mostly by S-opponent inputs. Furthermore, neurons with late S-cone inputs exhibit dynamic changes in the sharpness of their chromatic tuning over time. We propose that the sparse, S-opponent signal in the lateral geniculate nucleus is amplified in area V1, possibly through recurrent excitatory networks. This results in a delayed, sluggish cortical S-cone signal which is then integrated with L/M-opponent signals to rotate the lateral geniculate nucleus chromatic axes4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: V1 chromatic–temporal receptive-field maps.
Figure 2: Dynamics of sharpening of V1 chromatic responses.
Figure 3: Times-to-peak of V1 chromatic responses.

Similar content being viewed by others

References

  1. De Valois, R. L. et al. Analysis of response patterns of LGN cells. J. Opt. Soc. Am. 56, 966–977 (1966).

    Article  ADS  CAS  Google Scholar 

  2. Lennie, P. & D'Zmura, M. Mechanisms of color vision. CRC Crit. Rev. Neurobiol. 3, 333–400 (1988).

    CAS  Google Scholar 

  3. Dacey, D. Circuitry for color coding in the primate retina. Proc. Natl Acad. Sci. USA 93, 582–585 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Lennie, P. et al. Chromatic mechanisms in striate cortex of macaque. J. Neurosci. 10, 649–669 (1990).

    Article  CAS  Google Scholar 

  5. De Valois, R. L. & De Valois, K. K. Amulti stage color model. Vision Res. 33, 1053–1065 (1993).

    Article  CAS  Google Scholar 

  6. Hartline, H. K. The receptive fields of optic nerve fibers. Am. J. Physiol. 130, 690–699 (1940).

    Article  Google Scholar 

  7. MacLeod, D. I. A. & Boynton, R. M. Chromaticity diagram showing cone excitation by stimuli of equal luminance. J. Opt. Soc. Am. 69, 1183–1186 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Derrington, A. M. et al. Chromatic mechanisms in the lateral geniculate nucleus of macaque. J.Physiol. (Lond.) 357, 241–265 (1984).

    Article  CAS  Google Scholar 

  9. de Boer, E. & Kuyper, P. Triggered correlation. IEEE Trans. Biomed. Eng. 15, 169–179 (1968).

    Article  CAS  Google Scholar 

  10. Ringach, D. L. et al. Dynamics of orientation tuning in macaque primary visual cortex. Nature 387, 281–284 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Reid, R. C. et al. The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis. Neurosci. 14, 1015–1027 (1997).

    Article  CAS  Google Scholar 

  12. Stockman, A. et al. The temporal properties of the human short-wave photoreceptors and their associated pathways. Vision Res. 31, 189–208 (1991).

    Article  CAS  Google Scholar 

  13. Gegenfurtner, K. R. & Hawken, M. J. Temporal and chromatic properties of motion mechanisms. Vision Res. 35, 1547–1563 (1995).

    Article  CAS  Google Scholar 

  14. Rabin, J. et al. Visual evoked potentials in three-dimemsional color space: correlates of spatio-chromatic processing. Vision Res. 34, 2657–2671 (1994).

    Article  CAS  Google Scholar 

  15. Dacey, D. M. & Lee, B. B. The ‘blue-on’ opponent pathways in primate retina originates from a distinct bistratified ganglion cell. Nature 367, 731–735 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Martin, P. R. et al. Evidence that blue-on cells are part of the third geniculocortical pathway in primates. Eur. J. Neurosci. 9, 1536–1541 (1997).

    Article  CAS  Google Scholar 

  17. Gielen, C. C. A. M. et al. Reconstruction of cone-system contributions to responses of colour-opponent neurones in monkey lateral geniculate. Biol. Cybern. 44, 211–221 (1982).

    Article  CAS  Google Scholar 

  18. Tolhurst, D. J. & Heeger, D. J. Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex. Vis. Neurosci. 14, 293–309 (1997).

    Article  CAS  Google Scholar 

  19. Albrecht, D. G. & Geisler, W. S. Motion selectivity and the contrast-response function of simple cells in the visual cortex. Vision Res. 7, 531–546 (1991).

    CAS  Google Scholar 

  20. McCormick, D. A. et al. Comparative electrophysiology of pyramidal and sparsely spiny stellate nuerons of the neocortex. J. Neurophys. 54, 782–806 (1985).

    Article  CAS  Google Scholar 

  21. Pugh, M. et al. Computational modeling of orientation tuning dynamics in V1 neurons. Soc. Neurosci. Abstr. 23, 603 (1997).

    Google Scholar 

  22. de Monasterio, F. M. et al. Staining of blue-sensitive cones of the macaque retina by a fluorescent dye. Science 213, 1278–1281 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Calkins, D. J. et al. Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. J. Neurosci. 18, 3373–3385 (1998).

    Article  CAS  Google Scholar 

  24. Malpeli, J. G. & Schiller, P. H. Lack of blue off-center cells in the visual system of the monkey. Brain Res. 141, 385–389 (1978).

    Article  CAS  Google Scholar 

  25. Lennie, P. Recent developments in the phsyiology of color vision. Trends Neurosci. 5, 243–248 (1984).

    Article  Google Scholar 

  26. De Valois, R. L. et al. Color appearance with and without S-opponent cells. Vision Res. (submitted).

  27. Hawken, M. J. et al. Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the old world monkey. J. Neurosci. 8, 3541–3548 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. K. De Valois, S. D. Elfar, J. Gallant and E. Switkes for comments on the manuscript, and E. Switkes for implementation of the MBDKL colour space. This work was funded by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas P. Cottaris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cottaris, N., De Valois, R. Temporal dynamics of chromatic tuning in macaque primary visual cortex. Nature 395, 896–900 (1998). https://doi.org/10.1038/27666

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27666

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing