Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anticipation of moving stimuli by the retina

Abstract

A flash of light evokes neural activity in the brain with a delay of 30–100 milliseconds1, much of which is due to the slow process of visual transduction in photoreceptors2,3. A moving object can cover a considerable distance in this time, and should therefore be seen noticeably behind its actual location. As this conflicts with everyday experience, it has been suggested that the visual cortex uses the delayed visual data from the eye to extrapolate the trajectory of a moving object, so that it is perceived at its actual location4,5,6,7. Here we report that such anticipation of moving stimuli begins in the retina. A moving bar elicits a moving wave of spiking activity in the population of retinal ganglion cells. Rather than lagging behind the visual image, the population activity travels near the leading edge of the moving bar. This response is observed over a wide range of speeds and apparently compensates for the visual response latency. We show how this anticipation follows from known mechanisms of retinal processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Responses of two ganglion cells to flashed and moving bars.
Figure 2: Population response to flashed and moving bars.
Figure 3: Dependence of motion extrapolation on contrast.
Figure 4: Cascade model for a ganglion cell's light response.
Figure 5: Dependence of motion extrapolation on speed.

Similar content being viewed by others

References

  1. Maunsell, J. H. & Gibson, J. R. Visual response latencies in striate cortex of the macaque monkey. J.Neurophysiol. 68, 1332–1344 (1992).

    Article  CAS  Google Scholar 

  2. Lennie, P. The physiological basis of variations in visual latency. Vision Res. 21, 815–824 (1981).

    Article  CAS  Google Scholar 

  3. Schnapf, J. L., Kraft, T. W. & Baylor, D. A. Spectral sensitivity of human cone photoreceptors. Nature 325, 439–441 (1987).

    Article  ADS  CAS  Google Scholar 

  4. De Valois, R. L. & De Valois, K. K. Vernier acuity with stationary moving Gabors. Vision Res. 31, 1619–1626 (1991).

    Article  CAS  Google Scholar 

  5. Nijhawan, R. Motion extrapolation in catching. Nature 370, 256–257 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Khurana, B. & Nijhawan, R. Extrapolation or attention shift? Nature 378, 566 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Nijhawan, R. Visual decomposition of colour through motion extrapolation. Nature 386, 66–69 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Baldo, M. V. & Klein, S. A. Extrapolation or attention shift? Nature 378, 565–566 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Purushothaman, G., Patel, S. S., Bedell, H. E. & Ogmen, H. Moving ahead through differential visual latency. Nature 396, 424 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Whitney, D. & Murakami, I. Latency difference, not spatial extrapolation. Nature Neurosci. 1, 656–657 (1998).

    Article  CAS  Google Scholar 

  11. Smirnakis, S. M., Berry, M. J., Warland, D. K., Bialek, W. & Meister, M. Adaptation of retinal processing to image contrast and spatial scale. Nature 386, 69–73 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Jacobs, A. L. & Werblin, F. S. Spatiotemporal patterns at the retinal output. J. Neurophysiol. 80, 447–451 (1998).

    Article  CAS  Google Scholar 

  13. Shapley, R. M. & Victor, J. D. The effect of contrast on the transfer properties of cat retinal ganglion cells. J. Physiol. 285, 275–298 (1978).

    Article  CAS  Google Scholar 

  14. Sakai, H. M., Wang, J. L. & Naka, K. Contrast gain control in the lower vertebrate retinas. J. Gen. Physiol. 105, 815–835 (1995).

    Article  CAS  Google Scholar 

  15. Benardete, E. A., Kaplan, E. & Knight, B. W. Contrast gain control in the primate retina: P cells are not X-like, some M cells are. Visual Neurosci. 8, 483–486 (1992).

    Article  CAS  Google Scholar 

  16. Victor, J. D. The dynamics of the cat retinal X cell centre. J. Physiol. 386, 219–246 (1987).

    Article  CAS  Google Scholar 

  17. Crevier, D. W. & Meister, M. Synchronous period-doubling in flicker vision of salamander and man. J.Neurophysiol. 79, 1869–1878 (1998).

    Article  CAS  Google Scholar 

  18. Merigan, W. H. & Maunsell, J. H. How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16, 369–402 (1993).

    Article  CAS  Google Scholar 

  19. Sparks, D. L. Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiol. Rev. 66, 118–171 (1986).

    Article  CAS  Google Scholar 

  20. Knudsen, E. I. Auditory and visual maps of space in the optic tectum of the owl. J. Neurosci. 2, 1177–1194 (1982).

    Article  CAS  Google Scholar 

  21. Corey, D. P. & Hudspeth, A. J. Response latency of vertebrate hair cells. Biophys. J. 26, 499–506 (1979).

    Article  CAS  Google Scholar 

  22. Carandini, M., Heeger, D. J. & Movshon, J. A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).

    Article  CAS  Google Scholar 

  23. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997).

    Article  CAS  Google Scholar 

  24. Knudsen, E. I., du Lac, S. & Esterly, S. D. Computational maps in the brain. Annu. Rev. Neurosci. 10, 41–65 (1987).

    Article  CAS  Google Scholar 

  25. Meister, M., Pine, J. & Baylor, D. A. Multi-neuronal signals from the retina: acquisition and analysis. J.Neurosci. Methods 51, 95–106 (1994).

    Article  CAS  Google Scholar 

  26. Hunter, I. W. & Korenberg, M. J. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol. Cybern. 55, 135–144 (1986).

    MathSciNet  CAS  PubMed  MATH  Google Scholar 

  27. Rodieck, R. W. Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res. 5, 583–601 (1965).

    Article  CAS  Google Scholar 

  28. Warland, D. K., Reinagel, P. & Meister, M. Decoding visual information from a population of retinal ganglion cells. J. Neurophysiol. 78, 2336–2350 (1997).

    Article  CAS  Google Scholar 

  29. Devries, S. H. & Baylor, D. A. Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J.Neurophysiol. 78, 2048–2060 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Keat for assistance in generating the visual stimulus, and H. Berg and T.Holy for comments on the manuscript. This work was supported by a NRSA to M.B. and a grant from the NIH and a Presidential Faculty Fellowship to M.M.

Author information

Authors and Affiliations

Authors

Additional information

Correspondence and requests for material should be addressed to M.J.B.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, M., Brivanlou, I., Jordan, T. et al. Anticipation of moving stimuli by the retina. Nature 398, 334–338 (1999). https://doi.org/10.1038/18678

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18678

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing