Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of attentional stimulus selection after extrastriate cortical lesions in macaques

An Erratum to this article was published on 01 April 2000

Abstract

Many objects in natural visual scenes compete for attention. To identify the neural mechanisms necessary for visual attention, we made restricted lesions, affecting different quadrants of the visual field but leaving one quadrant intact, in extrastriate cortical areas V4 and TEO of two monkeys. Monkeys were trained to discriminate the orientation of a target grating surrounded by distracters. As distracter contrast increased, performance deteriorated in quadrants affected by V4 and TEO lesions, but not in the normal quadrant. Performance in affected quadrants was restored by increasing the contrast of the target relative to distracters. Thus, without V4 and TEO, visual attention is 'captured' by strong stimuli, regardless of their behavioral relevance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extent of V4 and TEO lesions in monkeys M1 and M2.
Figure 2: Effects of grating and distracter contrast on grating orientation discrimination.
Figure 3: Effects of grating and distracter contrast on grating orientation discrimination.
Figure 4: Effects of spacing between target grating and distracters (both 50% contrast).

Similar content being viewed by others

References

  1. Desimone, R. & Ungerleider, L. G. in Handbook of Neuropsychology Vol. 2 (eds. Boller, F. & Grafman, J.), 267– 296 (Elsevier, New York, 1989).

    Google Scholar 

  2. Zeki, S. M. The representation of colours in the cerebral cortex. Nature 284, 412–418 (1980).

    Article  CAS  Google Scholar 

  3. Desimone, R. & Schein, S. J. Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. J. Neurophysiol. 57, 835–868 ( 1987).

    Article  CAS  Google Scholar 

  4. Schein, S. J. & Desimone, R. Spectral properties of V4 neurons of the macaque. J. Neurosci. 10, 3369– 3389 (1990).

    Article  CAS  Google Scholar 

  5. Gallant, J. L., Braun, J. & Van Essen, D. C. Selectivity for polar, hyperbolic and cartesian gratings in macaque visual cortex. Science 259, 100 –103 (1993).

    Article  CAS  Google Scholar 

  6. Kobatake, E. & Tanaka, K. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J. Neurophysiol. 71, 856– 867 (1994).

    Article  CAS  Google Scholar 

  7. Gross, C. G., Rocha-Miranda, C. E. & Bender, D. B. Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol. 35, 96– 111 (1972).

    Article  CAS  Google Scholar 

  8. Desimone, R., Albright, T. D., Gross, C. G. & Bruce, C. Stimulus selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4, 2051–2062 (1984).

    Article  CAS  Google Scholar 

  9. Perrett, D. I., Rolls, E. T. & Caan, W. Visual neurons responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47, 329– 342 (1982).

    Article  CAS  Google Scholar 

  10. Fujita, I., Tanaka, K., Ito, M. & Cheng, K. Columns for visual features of objects in monkey inferotemporal cortex. Nature 360, 343–346 (1992).

    Article  CAS  Google Scholar 

  11. Komatsu, H. & Ideura, Y. Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey. J. Neurophysiol. 70, 677– 694 (1993).

    Article  CAS  Google Scholar 

  12. Miyashita, Y., Date, A. & Okuna, H. Configurational encoding of complex visual forms by single neurons of monkey temporal cortex. Neuropsychologia 31, 1119 –1131 (1993).

    Article  CAS  Google Scholar 

  13. Sary, G., Vogels, R. & Orban, G. A. Cue-invariant shape selectivity of macaque inferior temporal neurons. Science 260, 995– 997 (1993).

    Article  CAS  Google Scholar 

  14. Wild, H. M., Butler, S. R., Carden, D. & Kulikowski, J. J. Primate cortical area V4 important for colour constancy but not wavelength discrimination. Nature, 313, 133– 135 (1985).

    Article  Google Scholar 

  15. Heywood, C. A., Gadotti, A. & Cowey, A. Cortical area V4 and its role in the perception of color. J. Neurosci. 12, 4056– 4065 (1992).

    Article  CAS  Google Scholar 

  16. Schiller, P. H. & Lee, K. The role of the primate area V4 in vision. Science 251, 1251– 1253 (1991).

    Article  CAS  Google Scholar 

  17. Schiller, P. H. The effects of V4 and middle temporal (MT) lesions on visual performance in the rhesus monkey. Vis. Neurosci. 10, 717 –746 (1993).

    Article  CAS  Google Scholar 

  18. Walsh, V., Butler, S. R., Carden, D. & Kulikowski, J. J. The effects of V4 lesions on the visual abilities of macaques: shape discrimination. Behav. Brain Res. 50, 115– 126 (1992).

    Article  CAS  Google Scholar 

  19. Merigan, W. H. Basic visual capacities and shape discrimination after lesions of extrastriate area V4 in macaques. Vis. Neurosci. 13, 51–60 (1996).

    Article  CAS  Google Scholar 

  20. De Weerd, P., Desimone, R. & Ungerleider, L. G. Cue-dependent deficits in grating orientation discrimination after V4 lesions in macaques. Vis. Neurosci. 13, 529–538 (1996).

    Article  CAS  Google Scholar 

  21. Iwai, E. & Mishkin, M. Further evidence on the locus of the visual area in the temporal lobe of the monkey. Exp. Neurol. 25, 585–594 ( 1969).

    Article  CAS  Google Scholar 

  22. Cowey, A. & Gross, C. G. Effects of foveal prestriate and inferotemporal lesions on visual discrimination by rhesus monkeys. Exp. Brain Res. 11, 128–144 (1970).

    Article  CAS  Google Scholar 

  23. Dean, P. Effects of inferotemporal lesions on the behavior of monkeys. Psychol. Bull. 83, 41–71 (1976).

    Article  CAS  Google Scholar 

  24. Dean, P. Visual cortex ablation and thresholds for successively presented stimuli in rhesus monkeys: I. Orientation. Exp. Brain Res. 32, 445–458 (1978).

    Article  CAS  Google Scholar 

  25. Gaffan, D., Harrison, S. & Gaffan, E. A. Visual identification following inferotemporal ablation in the monkey. Q. J. Exp. Psychol. B 38, 5–30 (1986).

    Article  CAS  Google Scholar 

  26. Britten, K., Newsome, W. T. & Saunders, R. C. Effects of inferotemporal cortex lesions on form-from-motion discrimination in monkeys. Exp. Brain Res. 88, 292–302 (1992).

    Article  CAS  Google Scholar 

  27. Driver, J. & Baylis, G. C. Movement and visual attention: the spotlight metaphor breaks down. J. Exp. Psychol. Hum. Percept. Perform. 15, 448–456 ( 1989).

    Article  CAS  Google Scholar 

  28. Duncan, J. & Humphreys, G.W. Visual search and stimulus similarity. Psychol. Rev. 96, 433– 458 (1989).

    Article  CAS  Google Scholar 

  29. Posner, M. I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980).

    Article  CAS  Google Scholar 

  30. Treisman, A. M. Strategies and models of selective attention. Psychol. Rev. 76, 282–299 (1969).

    Article  CAS  Google Scholar 

  31. Chelazzi, L., Miller, E. K., Duncan, J. & Desimone, R. A neural basis for visual search in inferior temporal cortex. Nature 363, 345–347 ( 1993).

    Article  CAS  Google Scholar 

  32. Connor, C. E., Gallant, J. L., Preddie, D. C. & Van Essen, D. C. Responses in area V4 depend on the spatial relationship between stimulus and attention. J. Neurophysiol. 3, 1306– 1308 (1996).

    Article  Google Scholar 

  33. Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  34. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  Google Scholar 

  35. Motter, B. C. Focal attention produces spatially selective processing in visual cortical areas V1, V2 and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 ( 1993).

    Article  CAS  Google Scholar 

  36. Reynolds, J. H. Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736– 1753 (1999).

    Article  CAS  Google Scholar 

  37. Groh, J. M., Seidemann, E. & Newsome, W. T. Neurophysiology: Neural fingerprints of visual attention. Curr. Biol. 16, 1406–1409 (1996).

    Article  Google Scholar 

  38. Treue, S. & Maunsell, J. H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  CAS  Google Scholar 

  39. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193– 222 (1995).

    Article  CAS  Google Scholar 

  40. Distler, C., Boussaoud, D., Desimone, R. & Ungerleider, L. G. Cortical connections of inferior temporal area TEO in macaque monkeys. J. Comp. Neurol. 334, 125–150 (1993).

    Article  CAS  Google Scholar 

  41. Nakamura, H., Gattass, R., Desimone, R. & Ungerleider, L. G. The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques. J. Neurosci. 13, 3681– 3691 (1993).

    Article  CAS  Google Scholar 

  42. Desimone, R., Fleming, J. & Gross, C. G. Prestriate afferents to inferior temporal cortex: an HRP study. Brain Res. 184, 41– 55 (1980).

    Article  CAS  Google Scholar 

  43. Gattass, R., Sousa, A. P. & Gross, C. G. Visuotopic organization and extent of V3 and V4 of the macaque. J. Neurosci. 8, 1831– 1845 (1988).

    Article  CAS  Google Scholar 

  44. Boussaoud, D., Desimone, R. & Ungerleider, L. G. Visual topography of area TEO in the macaque. J. Comp. Neurol. 306, 554–575 (1991).

    Article  CAS  Google Scholar 

  45. Kastner, S., De Weerd, P., Desimone, R. & Ungerleider, L. G. Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282, 108– 111 (1998).

    Article  CAS  Google Scholar 

  46. Julesz, B. Texton gradients: the texton theory revisited. Biol. Cybern. 54, 245–251 (1986).

    Article  CAS  Google Scholar 

  47. Treisman, A. M. A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).

    Article  CAS  Google Scholar 

  48. Wolfe, J. M. Guided search: an alternative to the feature integration model for visual search. J. Exp. Psychol. Hum. Percept. Perform. 15, 419–433 (1989).

    Article  CAS  Google Scholar 

  49. Robinson, D. A. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Eng. 10, 137– 145 (1963).

    CAS  PubMed  Google Scholar 

  50. Wetherill, G. B. & Levitt, R. Sequential estimation of points on a psychometrical function. Br. J. Math. Stat. Psychol. 18, 1–10 (1965 ).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Hoag and M. Rogell for help with the behavioral testing of the monkeys, T. Galkin for help in reconstructing the lesions and G. Bertini, B. Jagadeesh, S. Kastne, and J. Reynolds for discussions of the data.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeWeerd, P., Peralta, M., Desimone, R. et al. Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nat Neurosci 2, 753–758 (1999). https://doi.org/10.1038/11234

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing