Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of autoreceptor functions in mice lacking the dopamine transporter

Abstract

Autoreceptors provide an important inhibitory feedback mechanism for dopamine neurons by altering neuronal functions in response to changes in extracellular levels of dopamine. Elevated dopamine may be a component of several neuropsychiatric disorders. However, evidence concerning the state of autoreceptors in such conditions has remained elusive. The function of dopamine autoreceptors was assessed in mice lacking the dopamine transporter (DAT). Genetic deletion of the DAT gene in mice results in a persistent elevation in levels of extracellular dopamine. Direct assessment of impulse-, synthesis- and release-regulating autoreceptors in these mice reveals a nearly complete loss of function. These findings may provide insight into the neurochemical consequences of hyperdopaminergia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: D2-type dopamine receptor binding in ventral midbrain.
Figure 2: In-vivo assessment of overall dopamine autoreceptor function.
Figure 3: Effect of quinpirole on the firing rate of VTA neurons.
Figure 4: Effects of GBL (750 mg per kg, i.p.) on extracellular dopamine levels in the striatum of WT and DAT–/– mice.
Figure 5: Ex-vivo application of the GBL protocol for testing synthesis-regulating autoreceptor function.
Figure 6: In-vivo microdialysis application of the GBL model for testing synthesis-regulating autoreceptor function.
Figure 7: Voltammetric evaluation of release-regulating autoreceptors.

Similar content being viewed by others

References

  1. Elsworth, J. D. & Roth, R. H. in The Dopamine Receptors (eds. Neve, K. A. & Neve, R. L.) 223– 265 (Humana, Totowa, New Jersey, 1997).

    Book  Google Scholar 

  2. Sokoloff, P., Giros, B., Martres, M.-P., Bouthenet, M.-L. & Schwartz, J.-C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347, 146–151 ( 1990).

    Article  CAS  Google Scholar 

  3. Gainetdinov, R. R., Grekhova, T. V., Sotnikova, T. D. & Rayevsky, K. S. Dopamine D2 and D3 receptor preferring antagonists differentially affect striatal dopamine release and metabolism in conscious rats. Eur. J. Pharmacol. 261, 327–331 ( 1994).

    Article  CAS  Google Scholar 

  4. Tepper, J. M., Sun, B.-C., Martin, L. P. & Creese, I. Functional roles of dopamine D2 and D3 autoreceptors on nigrostriatal neurons analyzed by antisense knockdown in vivo. J. Neurosci. 17, 2519–2530 (1997).

    Article  CAS  Google Scholar 

  5. Mercuri, N. B. et al. Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience 79, 323–327 (1997).

    Article  CAS  Google Scholar 

  6. Koeltzow, T. E. et al. Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice. J. Neurosci. 18 , 2231–2238 (1998).

    Article  CAS  Google Scholar 

  7. Bannon, M. J. & Roth, R. H. Pharmacology of mesocortical dopamine neurons. Pharmacol. Rev. 35, 53– 68 (1983).

    CAS  PubMed  Google Scholar 

  8. Cragg, S. J. & Greenfield, S. A. Differential autoreceptor control of somatodendritic and axon terminal dopamine release in substantia nigra, ventral tegmental area and striatum. J. Neurosci. 17, 5738–5746 (1997).

    Article  CAS  Google Scholar 

  9. Bates, M. D. et al. Regulation of responsiveness at D2 dopamine receptors by receptor desensitization and adenylyl cyclase sensitization. Mol. Pharmacol . 39, 55–63 ( 1990).

    Google Scholar 

  10. Drukarch, B., Schepens, E. & Stoof, J. C. Sustained activation does not desensitize the dopamine D2 receptor-mediated control of evoked in vitro release of radiolabeled acetylcholine from rat striatum. Eur. J. Pharmacol. 196, 209–212 (1991).

    Article  CAS  Google Scholar 

  11. Ivins, K. J., Luedtke, R. R., Artymyshyn, R. P. & Molinoff, P. B. Regulation of dopamine D2 receptors in a novel cell line (SUP1). Mol. Pharmacol. 39, 531–539 (1991).

    CAS  PubMed  Google Scholar 

  12. van Muiswinkel, F. L., Drukarch, B., Steinbusch, H. W. & Stoof, J. C. Dopamine D2 autoreceptors regulating the release of dopamine from cultured rat fetal dopaminergic neurons do not desensitize upon sustained activation: Implications for the combined pharmaco- and grafting therapy in Parkinsonian patients. Exp. Neurol. 125, 218– 227 (1994).

    Article  CAS  Google Scholar 

  13. Pitts, D. K., Wang, L., Kelland, M. D., Freeman, A. S. & Chiodo, L. A. Repeated stimulation of dopamine D2-like receptors: Reduced responsiveness of nigrostriatal and mesoaccumbens dopamine neurons to quinpirole. J. Pharmacol. Exp. Ther. 275, 412–421 (1995).

    CAS  PubMed  Google Scholar 

  14. Giros, B., Jaber, M., Jones, S. R., Wightman, R. M. & Caron, M. G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379 , 606–612 (1996).

    Article  CAS  Google Scholar 

  15. Jones, S. R. et al. Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc. Natl. Acad. Sci. 95, 4029–4034 (1998).

    Article  CAS  Google Scholar 

  16. Kalivas, P. W. & White, F. J. Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend. 51, 141–153 ( 1998).

    Article  Google Scholar 

  17. Cook, E. H. et al. Association of attention deficit hyperactivity disorder and the dopamine transporter gene. Am. J. Hum. Genet. 56 , 993–998 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gill, M., Daly, G., Heron, S., Hawi, Z. & Fitzgerald, M. Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Mol. Psychiatry 2, 311–313 (1997).

    Article  CAS  Google Scholar 

  19. Waldman, I. D. et al. Association and linkage of the dopamine transporter gene and attention-deficit hyperactivity disorder in children: heterogeneity owing to diagnostic subtype and severity. Am. J. Hum. Genet. 63, 1767–1776 (1998).

    Article  CAS  Google Scholar 

  20. Gainetdinov, R. R. et al. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283, 397–401 (1999).

    Article  CAS  Google Scholar 

  21. Timmerman, W., De Vries, J. B. & Westerink, B. H. Effects of D2 agonists on the release of dopamine: localization of the mechanism of action. Naunyn Schmiedebergs Arch. Pharmacol. 342, 650–660 (1990).

    Article  CAS  Google Scholar 

  22. White, F. J. & Wang, R. Y. Comparison of the effects of chronic haloperidol treatment on A9 and A10 dopamine neurons in the rat. Life Sci. 32, 983–993 ( 1983).

    Article  CAS  Google Scholar 

  23. Walters, J. R. & Roth, R. H. Dopaminergic neurons: an in vivo system for measuring drug interactions with presynaptic receptors. Naunyn-Schmied. Arch. Pharmacol. 296, 5 –14 (1976).

    Article  CAS  Google Scholar 

  24. Westerink, B.H, De Vries, J. B. & Duran, R. Use of microdialysis for monitoring tyrosine hydroxylase activity in the brain of conscious rats. J. Neurochem. 54, 381–387 (1990).

    Article  CAS  Google Scholar 

  25. Kennedy, R. T., Jones, S. R. & Wightman, R. M. Dynamic observation of dopamine autoreceptor effects in rat striatal slices. J. Neurochem. 59, 449–455 (1992).

    Article  CAS  Google Scholar 

  26. Drukarch, B. & Stoof, J. C. D2 dopamine autoreceptor selective drugs: do they really exist? Life Sci. 47, 361–376 (1990).

    Article  CAS  Google Scholar 

  27. White, F. J. Synaptic regulation of mesocorticolimbic dopamine neurons. Annu. Rev. Neurosci. 19, 405–436 (1996).

    Article  CAS  Google Scholar 

  28. Zoli, M. et al. The emergence of the volume transmission concept. Brain Res. Brain Res. Rev. 26, 136– 147 (1998).

    Article  CAS  Google Scholar 

  29. Ferguson, S. S., Barak, L. S., Zhang, J. & Caron, M. G. G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins. Can. J. Physiol. Pharmacol. 74, 1095– 1110 (1996).

    Article  CAS  Google Scholar 

  30. Sterne-Marr, R. & Benovic, J. L. Regulation of G protein-coupled receptors by receptor kinases and arrestins. Vitam. Horm. 51, 193–234 (1995).

    Article  CAS  Google Scholar 

  31. Woolverton, W. L. & Johnson, K. M. Neurobiology of cocaine abuse . Trends Pharmacol. Sci. 13, 193–200 (1992).

    Article  CAS  Google Scholar 

  32. Henry, D. J., Hu, X.-T. & White, F. J. Adaptations in the mesoaccumbens dopamine system resulting from repeated administration of dopamine D1 and D2 receptor-selective agonists: relevance to cocaine sensitization. Psychopharmacology (Berl.) 140, 233–242 ( 1998).

    Article  CAS  Google Scholar 

  33. Bosse, R. et al. Anterior pituitary hypoplasia and dwarfism in mice lacking the dopamine transporter. Neuron 19, 127 –138 (1997).

    Article  CAS  Google Scholar 

  34. Boyson, S. J., McGonigle, P. & Molinoff, P. Quantitative autoradiographic localization of the D-1 and D-2 subtypes of dopamine receptors in rat brain. J. Neurosci. 6, 3177–3188 ( 1986).

    Article  CAS  Google Scholar 

  35. Burris, K. D. et al. Lack of discrimination by agonists for D2 and D3 dopamine receptors. Neuropsychopharmacology 12, 335 –345 (1995).

    Article  CAS  Google Scholar 

  36. Gainetdinov, R. R., Fumagalli, F., Jones, S. R. & Caron, M. G. Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter. J. Neurochem. 69 , 1322–1325 (1997).

    Article  CAS  Google Scholar 

  37. Franklin, K. B. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates (Academic, San Diego, 1997 ).

    Google Scholar 

  38. White, F. J., Hu, X.-T., Zhang, X.-F. & Wolf, M. E. Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J. Pharmacol. Exp. Ther. 273, 445–454 (1995).

    CAS  PubMed  Google Scholar 

  39. Xu, M. et al. Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor deficient mice. Cell 79, 945–955 ( 1994).

    Article  CAS  Google Scholar 

  40. Kawagoe, K., Zimmerman, J. B. & Wightman, R. M. Principles of voltammetry and microelectrode surface states. J. Neurosci. Methods 48, 225– 240 (1993).

    Article  CAS  Google Scholar 

  41. Jones, S. R., Garris, P. A., σ, C. D. & Wightman, R. M. Comparison of dopamine uptake in the basolateral amygdaloid nucleus, caudate-putamen and nucleus accumbens. J. Neurochem. 64, 2581–2589 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jason Holt and Susan Suter for technical assistance. S.R.J. is the recipient of a Young Investigator Award from NARSAD. This work was supported in part by NIH grant NS 19576, an unrestricted Neuroscience Award from Bristol-Myers Squibb and an unrestricted grant from Zeneca Pharmaceuticals to M.G.C. M.G.C. is an Investigator of the Howard Hughes Medical Institute. R.R.G. is a visiting scientist from the Institute of Pharmacology RAMS, Moscow, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc G. Caron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, S., Gainetdinov, R., Hu, XT. et al. Loss of autoreceptor functions in mice lacking the dopamine transporter . Nat Neurosci 2, 649–655 (1999). https://doi.org/10.1038/10204

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing