Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation

Abstract

Several SH3-domain-containing proteins have been implicated in endocytosis by virtue of their interactions with dynamin; however, their functions remain undefined. Here we report the efficient reconstitution of ATP-, GTP-, cytosol- and dynamin-dependent formation of clathrin-coated vesicles in permeabilized 3T3-L1 cells. The SH3 domains of intersectin, endophilin I, syndapin I and amphiphysin II inhibit coated-vesicle formation in vitro through interactions with membrane-associated proteins. Most of the SH3 domains tested selectively inhibit late events involving membrane fission, but the SH3A domain of intersectin uniquely inhibits intermediate events leading to the formation of constricted coated pits. These results suggest that interactions between SH3 domains and their partners function sequentially in endocytic coated-vesicle formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytosol- and ATP-dependent coated-vesicle formation is efficiently reconstituted in permeabilized 3T3-L1 cells.
Figure 2: Dynamin is necessary but not sufficient for coated-vesicle fission
Figure 3: GST–SH3 domains inhibit Tfn endocytosis in permeabilized 3T3-L1 cells.
Figure 4: Inhibition by GST–SH3 domains requires preincubation with membranes.
Figure 5: GST–SH3 domains inhibit distinct events in coated-vesicle formation.
Figure 6: Models for coated-vesicle formation in vitro.

Similar content being viewed by others

References

  1. Schmid, S. L., McNiven, M. A. & De Camilli, P. Dynamin and its partners: a progress report. Curr. Opin. Cell Biol. 10, 504–512 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin’s GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481–486 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. David, C., McPherson, P. S., Mundigl, O. & deCamilli, P. A. Role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc.Natl Acad. Sci. USA 93, 331–335 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leprince, C. et al. A new member of the amphiphysin family connecting endocytosis and signal transduction pathways. J. Biol. Chem. 272 , 15101–15105 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Ramjaun, A. R., Micheva, K. D., Bouchelet, I. & McPherson, P. S. Identification and characterization of a nerve terminal-enriched amphiphysin isoform. J. Biol. Chem. 272, 16700– 16706 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. de Heuvel, E. et al.Identification of the major synaptojanin-binding proteins in brain. J. Biol.Chem. 272, 8710– 8716 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Ringstad, N., Nemoto, Y. & De Camilli, P. The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc.Natl Acad. Sci. USA 94, 8569– 8574 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roos, J. & Kelly, R. B. Dap160, a neural-specific eps15 homology and multiple SH3 domain-containing protein that interacts with Drosophila dynamin. J. Biol.Chem. 273, 19108–19119 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Yamabhai, M. et al. Intersectin, a novel adaptor protein with two eps15 homology and five src homology3 domains. J. Biol. Chem. 273, 31401–31407 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Senger, A. S., Wang, W., Bishay, J., Cohen, S. & Egan, S. E. The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J. 18, 1159–1171 (1999).

    Article  Google Scholar 

  11. Qualmann, B., Roos, J., DiGregorio, P. J. & Kelly, R. B. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol. Biol.Cell 10 , 501–513 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gout, I. et al.The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell 75, 25–36 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. McPherson, P. S. et al.A presynaptic inositol 5 phosphatase. Nature 379, 353–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. McPherson, P. S. et al.Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I. Proc. Natl Acad. Sci. USA 91, 6486–6490 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wigge, P. & McMahon, H. T. The amphiphysin family of proteins and their role in endocytosis at the synapse. Trends Neurosci. 21 339–344 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  16. Shupliakov, O. et al.Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276, 259– 263 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Wigge, P., Vallis, Y. & McMahon, H. T. Inhibition of receptor-mediated endocytosis by the amphiphysin SH3 domain. Curr. Biol. 7, 554 –560 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Di Fiore, P. P., Pelicci, P. G. & Sorkin, A. EH: a novel protein-protein interaction domain potentially involved in intracellular sorting. Trends Biochem. Sci. 22, 411–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Hussain, N. K. et al. Splice variants of intersectin are components of the endocytic machinery in neurons and non-neuronal cells. J. Biol. Chem. 274, 15671–15677 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Mahaffey, D. T., Moore, M. S., Brodsky, F. M. & Anderson, R. G. W. Coat proteins isolated from clathrin coated vesicles can assemble into coated pits. J. Cell Biol. 108, 1615– 1624 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, H. C., Moore, M. S., Sanan, D. A. & Anderson, R. G. W. Reconstitution of clathrin-coated pit budding from plasma membranes. J. Cell Biol. 114, 881–891 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Gilbert, A., Paccaud, J. P. & Carpentier, J. L. Direct measurement of clathrin-coated vesicle formation using a cell-free assay. J. Cell Sci. 110, 3105–3115 (1997).

    CAS  PubMed  Google Scholar 

  23. Schmid, S. L. & Smythe, E. Stage-specific assays for coated pit formation and coated vesicle budding invitro. J. Cell Biol. 114, 869–880 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  24. Smythe, E., Carter, L. L. & Schmid, S. L. Cytosol- and clathrin-dependent stimulation of endocytosis invitro by purified adaptors. J. Cell Biol. 119 , 1163–1171 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: An integrated process . Annu. Rev. Biochem. 66, 511– 548 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Orci, L. et al.Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins. Nature 362, 648–652 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Barlowe, C. et al.COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Damke, H., Baba, T., Warnock, D. E. & Schmid, S. L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127, 915–934 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Oh, P., McIntosh, D. P. & Schnitzer, J. E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101– 114 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ostermann, J. et al. Stepwise assembly of functionally active transport vesicles . Cell 75, 1015–1025 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Rowe, T. et al. COPII vesicles derived from mammalian endoplasmic reticulum (ER) microsomes recruit COP1. J.Cell Biol. 135, 895–911 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Jost, M., Simpson, F., Kavran, J. M., Lemmon, M. A. & Schmid, S. L. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr. Biol. 8, 1399–1402 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  33. Achiriloaie, M., Barylko, B. & Albenesi, J. P. Essential role of the dynamin pleckstrin homology domain in receptor-mediated endocytosis. Mol. Cell Biol. 19, 1410–1415 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, A., Frank, D. W., Marks, M. S. & Lemmon, M. A. Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domain. Curr. Biol. 9, 261–264 ( 1999).

    Article  PubMed  Google Scholar 

  35. Vallis, Y., Wigge, P., Marks, B., Evans, P. R. & McMahon, H. T. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol. 9, 257–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Carter, L. L., Redelmeier, T. E., Woolenweber, L. A. & Schmid, S. L. Multiple GTP-binding proteins participate in clathrin-coated vesicle-mediated endocytosis. J. Cell Biol. 120, 37– 45 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Micheva, K. D., Kay, B. K. & McPherson, P. S. Synaptojanin forms two separate complexes in the nerve terminal. Interactions with endophilin and amphiphysin. J. Biol. Chem. 272, 27239–27245 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Z. & Moran, M. F. Requirement for the adapter protein GRB2 in EGF receptor endocytosis. Science 272, 1935–1939 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Sparks, A. B. et al.Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCg, Crk, and Grb2. Proc. Natl Acad. Sci. USA 93, 1540–1544 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Robinson, P. J. et al. Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals. Nature 365, 163– 166 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Lamaze, C., Baba, T., Redelmeier, T. E. & Schmid, S. L. Recruitment of epidermal growth factor receptor and transferrin receptors into coated pits in vitro: differing biochemical requirements. Mol. Biol. Cell 3, 1181–1194 (1993).

    Google Scholar 

  42. Schmid, S. L. & Carter, L. L. ATP is required for receptor-mediated endocytosis in intact cells. J.Cell Biol. 111, 2307–2318 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Heuser, J. E. & Reese, T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction . J. Cell Biol. 57, 315– 344 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Estes, P. S. et al. Traffic of dynamin within individual Drosophila synaptic boutons relative to compartment specific markers. J. Neurosci. 16, 5443–5456 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gaidarov, I., Santini, F., Warren, R. A. & Keen, J. H. Spatial control of coated pit dynamics in living cells. Nature Cell Biol. 1, 1–7 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  46. Micheva, K. D., Ramjaun, A. R., Kay, B. K. & McPherson, P. S. SH3 domain-dependent interactions of endophilin with amphiphysin. FEBS Lett. 414, 308–312 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Warnock, D. E., Terlecky, L. J. & Schmid, S. L. Dynamin GTPase is stimulated by crosslinking through the C-terminal proline-rich domain. EMBO J. 14, 1322–1328 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Publications, Cold SpringHarbor, 1988 ).

    Google Scholar 

  49. Warnock, D. E., Baba, T. & Schmid, S. L. Ubiquitously expressed dynamin-II has a higher intrinsic GTPase activity and a greater propensity for self-assembly than neuronaldynamin-I . Mol. Biol. Cell 8, 2553– 2562 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Muhlberg, A. B., Warnock, D. E. & Schmid, S. L. Domain structure and intramolecular regulation of dynamin GTPase. EMBO J. 16, 6676– 6683 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Philie, E. De Heuvel and M. Yamabhai for providing reagents; M. Jost for critical reading of the manuscript; and W. Sossin for advice and support (to P.S.M.). The work was supported by grants from the NIH (S.L.S, R.B.K.) and the Natural Sciences and Engineering Research Council (P.S.M.) and by the University of Wisconsin Madison Medical School (B.K.K.). F.S. is supported by a Wellcome Trust Fellowship and B.Q by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft. S.L.S. is an Established Investigator of the American Heart Association and P.S.M. is a Scholar of the Medical Research Council of Canada and an Alfred P. Sloan Research Fellow.

Correspondence and requests for materials should be addressed to P.S.M or S.L.S.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, F., Hussain, N., Qualmann, B. et al. SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nat Cell Biol 1, 119–124 (1999). https://doi.org/10.1038/10091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing