Skip to main content
Articles

External Behavior Monitoring Mirrors Internal Behavior Monitoring

Error-Related Negativity for Observed Errors

Published Online:https://doi.org/10.1027/0269-8803.19.4.281

Abstract: The discovery of mirror neurons in monkeys has reshaped thinking about how the brain processes observed actions. There is growing evidence that these neurons, which show similar firing patterns for action execution and observation, also exist in humans. Many parts of the motor system required to perform a specific action are activated during the observation of the same action. We hypothesized that behavior monitoring that occurs during action execution is mirrored during action observation. To test this, we measured error negativity/error-related negativity (Ne/ERN) while participants performed and observed a Go/NoGo task. The Ne/ERN is an event-related potential that is thought to reflect an error detection process in the brain. In addition to finding an Ne/ERN for performed errors, we found that an Ne/ERN was also generated for observed errors. The Ne/ERN for observed errors may reflect a system that plays a key role in imitation and observational learning.

References

  • Annett, M. (1970). A classification of hand preference by association analysis. British Journal of Psychology, 61, 303– 321 First citation in articleCrossrefGoogle Scholar

  • Blakemore, S. , Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2, 561– 567 First citation in articleCrossrefGoogle Scholar

  • Blandin, Y. , Proteau, L. (2000). On the cognitive basis of observational learning: Development of mechanisms for the detection and correction of errors. Quarterly Journal of Experimental Psychology, 53A, 846– 867 First citation in articleCrossrefGoogle Scholar

  • Buccino, G. , Binkofski, F. , Fink, G.R. , Fadiga, L. , Fogassi, L. , Gallese, V. , Seitz, R.J. , Zilles, K. , Rizzolatti, G. , Freund, H.J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13, 400– 404 First citation in articleGoogle Scholar

  • Cochin, S. , Barthelemy, C. , Roux, S. , Martineau, J. (1999). Observation and execution of movement: Similarities demonstrated by quantified electroencephalography. European Journal of Neuroscience, 11, 1839– 1842 First citation in articleCrossrefGoogle Scholar

  • Coles, M.G. , Scheffers, M.K. , Holroyd, C.B. (2001). Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and theory of error-processing. Biological Psychology, 56, 173– 189 First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. , Posner, M.I. , Tucker, D.M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5, 303– 305 First citation in articleCrossrefGoogle Scholar

  • Eriksen, B.A. , Eriksen, C.W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16, 143– 149 First citation in articleCrossrefGoogle Scholar

  • Fadiga, L. , Fogassi, L. , Pavesi, G. , Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73, 2608– 2611 First citation in articleCrossrefGoogle Scholar

  • Falkenstein, M. (2004). Errors, conflicts, and the brain: A review of contributions to the Error Conference, Dortmund 2003. Journal of Psychophysiology, 18, 153– 163 First citation in articleLinkGoogle Scholar

  • Falkenstein, M. , Hohnsbein, J. , Hoormann, J. , Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78, 447– 455 First citation in articleCrossrefGoogle Scholar

  • Falkenstein, M. , Hoormann, J. , Christ, S. , Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 87– 107 First citation in articleCrossrefGoogle Scholar

  • Ford, J.M. , Whitfield, S.L. , Mathalon, D.H. (2004). The neuroanatomy of conflict and error: ERP and fMRI. In M. Ullsperger & M. Falkenstein (Eds.),Errors, conflicts, and the brain. Current opinions on performance monitoring: Proceedings of the conference held in Dortmund, Germany, on July 3-5, 2003 (pp. 42-48). Leipzig: MPI of Cognitive Neuroscience First citation in articleGoogle Scholar

  • Frith, C.D. , Frith, U. (1999). Interacting minds - A biological basis. Science, 286, 1692– 1695 First citation in articleCrossrefGoogle Scholar

  • Gallese, V. , Fadiga, L. , Fogassi, L. , Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593– 609 First citation in articleCrossrefGoogle Scholar

  • Gallese, V. , Goldman, A. (1998). Mirror neurons and the simulation theory for mind-reading. Trends in Cognitive Sciences, 2, 493– 501 First citation in articleCrossrefGoogle Scholar

  • Gehring, W.J. , Goss, B. , Coles, M.G.H. , Meyer, D.E. , Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385– 390 First citation in articleCrossrefGoogle Scholar

  • Gemba, H. , Sasaki, K. , Brooks, V.B. (1986). Error potentials in limbic cortex (anterior cingulate area-24) of monkeys during motor learning. Neuroscience Letters, 70, 223– 227 First citation in articleCrossrefGoogle Scholar

  • Grafton, S.T. , Arbib, M.A. , Fadiga, L. , Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Experimental Brain Research, 112, 103– 111 First citation in articleCrossrefGoogle Scholar

  • Gratton, G. , Coles, M.G.H. , Donchin, E. (1984). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468– 484 First citation in articleCrossrefGoogle Scholar

  • Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17, 187– 245 First citation in articleCrossrefGoogle Scholar

  • Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage, 14, S103– S109 First citation in articleCrossrefGoogle Scholar

  • Kiehl, K.A. , Liddle, P.F. , Hopfinger, J.B. (2000). Error processing and the rostral anterior cingulate: An event-related fMRI study. Psychophysiology, 37, 216– 223 First citation in articleCrossrefGoogle Scholar

  • Kohler, E. , Keysers, C. , Umilta, M.A. , Fogassi, L. , Gallese, V. , Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297, 846– 848 First citation in articleCrossrefGoogle Scholar

  • Lutzenberger, W. , Elbert, T. , Rockstroh, B. , Birbaumer, N. (1985). Das EEG . [The EEG]. Berlin: Springer-Verlag First citation in articleCrossrefGoogle Scholar

  • Luu, P. , Tucker, D.M. (2001). Regulating action: Alternating activation of midline frontal and motor cortical networks. Clinical Neurophysiology, 112, 1295– 1306 First citation in articleCrossrefGoogle Scholar

  • Luu, P. , Tucker, D.M. , Derryberry, D. , Reed, M. , Poulsen, C. (2003). Electrophysiological responses to errors and feedback in the process of action regulation. Psychological Science, 14, 47– 53 First citation in articleCrossrefGoogle Scholar

  • Luu, P. , Tucker, D.M. , Makeig, S. (in press). Frontal midline theta and the error-related negativity: Neurophysiological mechanisms of action regulation. Clinical Neurophysiology, First citation in articleGoogle Scholar

  • McCarthy, G. , Wood, C.C. (1985). Scalp distribution of event-related potentials: An ambiguity associated with analysis of variance models. Electroencephalography and Clinical Neurophysiology, 62, 203– 208 First citation in articleCrossrefGoogle Scholar

  • Miltner, W.H.R. , Brauer, J. , Hecht, H. , Trippe, R. , Coles, M.G.H. (2004). Parallel brain activity for self-generated and observed errors. In M. Ullsperger & M. Falkenstein (Eds.),Errors, conflicts, and the brain. Current opinions on performance monitoring: Proceedings of the conference held in Dortmund, Germany, on July 3-5, 2003 (pp. 124-129). Leipzig: MPI of Cognitive Neuroscience First citation in articleGoogle Scholar

  • Nishitani, N. , Hari, R. (2000). Temporal dynamics of cortical representation for action. Proceedings of the National Academy of Sciences, 97, 913– 918 First citation in articleGoogle Scholar

  • Oostenveld, R. , Praamstra, P. (2001). The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112, 713– 719 First citation in articleCrossrefGoogle Scholar

  • Paus, T. (2001). Primate anterior cingulate cortex: Where motor control, drive and cognition interface. Nature Reviews Neuroscience, 2, 417– 424 First citation in articleCrossrefGoogle Scholar

  • Rizzolatti, G. , Fadiga, L. , Gallese, V. , Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131– 141 First citation in articleCrossrefGoogle Scholar

  • Rizzolatti, G. , Fogassi, L. , Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661– 670 First citation in articleCrossrefGoogle Scholar

  • van Boxtel, G.J.M. (2004). The use of the subtraction technique in the psychophysiology of response inhibition and conflict. In M. Ullsperger & M. Falkenstein (Eds.),Errors, conflicts, and the brain. Current opinions on performance monitoring: Proceedings of the conference held in Dortmund, Germany, on July 3-5, 2003 (pp. 219-225). Leipzig: MPI of Cognitive Neuroscience First citation in articleGoogle Scholar

  • van Schie, H.T. , Mars, R.B. , Coles, M.G.H. , Bekkering, H. (2004). Modulation of activity in medial frontal and motor cortices during error observation. Nature Neuroscience, 7, 549– 554 First citation in articleCrossrefGoogle Scholar