Skip to main content
Log in

Unbiased estimates of number and size of rat dorsal root ganglion cells in studies of structure and cell survival

  • Published:
Journal of Neurocytology

Abstract

For quantitative studies of rat dorsal root ganglion (DRG) in experimental models stereological principles offer a number of different techniques. The application, however, requires knowledge of the anatomy and cytology of the ganglion, considerations of sampling and choosing between the many estimators available. For number and volume estimates in thick glycolmethacrylate sections the optical fractionator and the vertical planar rotator technique in most cases provide sufficient efficiency and are simple to use. Classification of the neurons in the DRG into A- and B-cells is of value in experimental conditions where the two cell types can react differently. Studies on development and subclassification of neuronal DRG cells will gain from application of stereological methods, also. Until now the methods have mainly been applied in studies of axotomy and in a few intoxication models where the time course of cell loss and changes in perikarya volume are important parameters. Further quantitative studies providing better understanding of distribution and expression of neuropeptides, cytokines, apoptotic molecules etc. will provide insight for future therapeutic approaches in neurodegenerative disorders. The more demanding staining techniques require less restrictive embedding media, but unbiased principles are available for almost all the stereological techniques applied to tissue only deformed after sectioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ALDSKOGIUS, H. & RISLING, M. (1981) Effect of sciatic neurectomy on neuronal number and size distribution in the L7 ganglion of kittens. Experimental Neurology 74, 597-604.

    Google Scholar 

  • ANDRES, K. H. (1961) Untersuchungen Uber Den Feinbau Von Spinalganglien. Zeitscrift für Zellforschung 55, 1-48.

    Google Scholar 

  • ANDERSEN, B. B. & GUNDERSEN, H. J. G. (1999) Pronounced loss of cell nuclei and anisotropic deformation of thick sections. Journal of Microscopy 196, 69-73.

    Google Scholar 

  • APFEL, S. C. (2002) Nerve growth factor for the treatment of diabetic neuropathy: What went wrong, what went right, and what does the future hold? International Review of Neurobiology 50, 393-413, 393–413.

    Google Scholar 

  • ARVIDSSON, J., YGGE, J. & GRANT, G. (1986) Cell loss in lumbar dorsal root ganglia and transganglionic degeneration after sciatic nerve resection in the rat. Brain Research 373, 15-21.

    Google Scholar 

  • BADDELEY, A. J., GUNDERSEN, H. J. & CRUZ ORIVE, L. M. (1986) Estimation of surface area from vertical sections. Journal of Microscopy 142, 259-276.

    Google Scholar 

  • BERGMAN, E. & ULFHAKE, B. (1998) Loss of primary sensory neurons in the very old Rat: Neuron number estimates using the disector method and confocal optical sectioning. Journal of Comparative Neurology 396, 211-222.

    Google Scholar 

  • BISBY, M. A. & BULGER, V. T. (1977) Reversal of axonal transport at a nerve crush. Journal of Neurochemistry 29, 313-320.

    Google Scholar 

  • BONDOK, A. A. & SANSONE, F. M. (1984) Retrograde and transganglionic degeneration of sensory neurons after a peripheral nerve lesion at birth. Experimental Neurology 86, 322-330.

    Google Scholar 

  • BRAENDGAARD, H., EVANS, S. M., HOWARD, C. V. & GUNDERSEN, H. J. (1990) The total number of neurons in the human neocortex unbiasedly estimated using optical disectors. Journal of Microscopy 157, 285-304.

    Google Scholar 

  • CAJAL, S. R. (1909) Neurones extra-médullaires, mais dont le cylindre-axe pénétre dans la moelle. In Histologie du système nerveux de l'homme et des vertébrés, vol. 1 (translated by AZOULAY, L (1952) Madrid) pp. 420-460.

    Google Scholar 

  • CARLTON, S. M. & HARGETT, G. L. (2002) Stereological analysis of Ca(2+)/calmodulin-dependent protein kinase IIα-containing dorsal root ganglion neurons in the rat: Colocalization with isolectin griffonia simplicifolia, calcitonin gene-related peptide, or vanilloid receptor 1. Journal of Comparative Neurology 448, 102-110.

    Google Scholar 

  • CAVANAGH, J. B. (1979) The ‘dying back’ process. A common denominator in many naturally occurring and toxic neuropathies. Archives of Pathology and Laboratory Medicine 103, 659-664.

    Google Scholar 

  • CAVANAGH, J. B. (1982) The pathokinetics of acrylamide intoxication: Are assessment of the problem. Neuropathology and Applied Neurobiology 8, 315-336.

    Google Scholar 

  • CAVANAGH, J. B. & NOLAN, C. C. (1982) Selective loss of Purkinje cells from the rat cerebellum caused by acrylamide and the responses of β-glucuronidase and β-galactosidase. Acta Neuropathologica 58, 210-214.

    Google Scholar 

  • CHUNG, K. & COGGESHALL, R. E. (1984) The ratio of dorsal root ganglion cells to dorsal root axons in sacral segments of the cat. Journal of Comparative Neurology 225, 24-30.

    Google Scholar 

  • COGGESHALL, R. E. (1980) Law of separation of function of the spinal roots. Physiological Reviews 60, 716-755.

    Google Scholar 

  • COGGESHALL, R. E. (1992) A consideration of neural counting methods. Trends in Neuroscience 15, 211-212.

    Google Scholar 

  • DEGN, J., TANDRUP, T. & JAKOBSEN, J. (1999) Effect of nerve crush on perikaryal number and volume of neurons in adult rat dorsal root ganglion. Journal of Comparative Neurology 412, 186-192.

    Google Scholar 

  • DEVOR, M. & GOVRIN-LIPPMANN, R. (1985) Neurogenesis in adult rat dorsal root ganglia. Neuroscience Letters 61, 189-194.

    Google Scholar 

  • DEVOR, M., GOVRIN LIPPMANN, R., FRANK, I. & RABER, P. (1985) Proliferation of primary sensory neurons in adult rat dorsal root ganglion and the kinetics of retrograde cell loss after sciatic nerve section. Somatosensensory Research 3, 139-167.

    Google Scholar 

  • DOGIEL, A. S. (1896) Der Bau Der Spinalganglien Bei Den Saugetieren. Anatomischer Anzeiger vol. 12, Centralblatt fur die Gesante Wissenschaffliche Anatomie, pp. 140-152.

  • DORPH-PETERSEN, K. A., NYENGAARD, J. R. & GUNDERSEN, H. J. (2001) Tissue shrinkage and unbiased stereological estimation of particle number and size. Journal of Microscopy 204, 232-246.

    Google Scholar 

  • DUCE, I. R. & KEEN, P. (1977) An ultrastructural classification of the neuronal cell bodies of the rat dorsal root ganglion using zinc iodide osmium-impregnation. Cell and Tissue Research 185, 263-277.

    Google Scholar 

  • ERIKSSON, N. P., LINDSAY, R. M. & ALDSKOGIUS, H. (1994) BDNF and NT-3 rescue sensory but not motorneurons following axotomy in the neonate. Neuroreport 5, 1445-1448.

    Google Scholar 

  • FAREL, P. B. (2002) Sensory neuron addition in juvenile rat: Time course and specificity. Journal of Comparative Neurology 449, 158-165.

    Google Scholar 

  • FAREL, P. B. (2003) Late differentiation contributes to the apparent increase in sensory neuron number in juvenile rat. Developmental Brain Research 144, 91-98.

    Google Scholar 

  • FERINGA, E. R., LEE, G. W., VAHLSING, H. L. & GILBERTIE, W. J. (1985) Cell death in the adult rat dorsal root ganglion after hind limb amputation, spinal cord transection, or both operations. Experimental Neurology 87, 349-357.

    Google Scholar 

  • GLOVER, R. A. (1967) Sequential cellular changes in the nodose ganglion following section of the vagus nerve at two levels. Anatomical Records 157, 248.

    Google Scholar 

  • GROVES, M. J., AN, S. F., GIOMETTO, B. & SCARAVILLI, F. (1999) Inhibition of sensory neuron apoptosis and prevention of loss by NT-3 administration following axotomy. Experimental Neurology 155, 284-294.

    Google Scholar 

  • GROVES, M. J., CHRISTOPHERSON, T., GIOMETTO, B. & SCARAVILLI, F. (1997) Axotomy-induced apoptosis in adult rat primary sensory neurons. Journal of Neurocytology 26, 615-624.

    Google Scholar 

  • GUNDERSEN, H. J. G. (1977) Notes on the estimation of the numerical density of abitraty profiles: The edge effect. Journal of Microscopy 111, 219-223.

    Google Scholar 

  • GUNDERSEN, H. J. (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. Journal of Microscopy 143, 3-45.

    Google Scholar 

  • GUNDERSEN, H. J. (1988) The nucleator. Journal of Microscopy 151, 3-21.

    Google Scholar 

  • GUNDERSEN, H. J., BAGGER, P., BENDTSEN, T., EVANS, S.M., KORBO, L., MARCUSSEN, N., MØLLER, A., NIELSEN, K., NYENGAARD, J. R., PAKKENBERG, B., SØRENSEN, F. B., VESTERBY, A. & WEST, M. J. (1988a) The new stereological tools: Disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96, 857-881.

    Google Scholar 

  • GUNDERSEN, H. J., BENDTSEN, T., KORBO, L., MARCUSSEN, N., MØLLER, A., NIELSEN, K., NYENGAARD, J. R., PAKKENBERG, B., SØRENSEN, F. B., VESTERBY, A. & WEST, M. J. (1988b) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS 96, 379-394.

    Google Scholar 

  • GUNDERSEN, H. J. & JENSEN, E. B. (1987) The efficiency of systematic sampling in stereology and its predictions. Journal of Microscopy 147, 3-45.

    Google Scholar 

  • GUNDERSEN, H. J., JENSEN, E. B., KIÊU, K. & NIELSEN, J. (1999) The efficiency of systematic sampling in stereology—reconsidered. Journal of Microscopy 193, 199-211.

    Google Scholar 

  • GUNDERSEN, H. J. & OSTERBY, R. (1981) Optimizing sampling efficiency of stereological studies in biology: Or ‘Do more less well!’. Journal of Microscopy 121, 65-73.

    Google Scholar 

  • HIMES, B. T. & TESSLER, A. (1989) Death of some dorsal root ganglion neurons and plasticity of others following sciatic nerve section in adult and neonatal rats. Journal of Comparative Neurology 284, 215-230.

    Google Scholar 

  • HOHEISEL, U. & MENSE, S. (1986) Non-myelinated afferent fibres do not originate exclusively from the smallest dorsal root ganglion cells in the cat. Neuroscience Letters 72, 153-157.

    Google Scholar 

  • HULSEBOSCH, C. E., COGGESHALL, R. E. & CHUNG, K. (1986) Numbers of rat dorsal root axons and ganglion cells during postnatal development. Developmental Brain Research 391, 105-113.

    Google Scholar 

  • HUMBERTSON, A. (1963) A chronological study of the degenerative phenomena of dorsal root ganglia cells following section of the sciatic nerve. Anatomical Record 145, 244 (Abstract).

    Google Scholar 

  • JENSEN, E. B. (1998) Local stereology. In Advanced Series on Statistical Science and Applied Probability, vol. 5 (edited by BARNDORFF-NIELSEN, O. E.) pp. 27-29. Singapore, NJ, London and Hong Kong: World Scientific.

    Google Scholar 

  • JENSEN, E. B. & GUNDERSEN, H. J. (1993) The rotator. Journal of Microscopy 170, 35-44.

    Google Scholar 

  • JOHNSON, JR., E. M., CHANG, J. Y., KOIKE, T. & MARTIN, D. P. (1989) Why do neurons die when deprived of trophic factor. Neurobiology of Aging 10, 549-552.

    Google Scholar 

  • JONES, H. B. & CAVANAGH, J. B. (1984) The evolution of intracellular responses to acrylamide in rat spinal ganglion neurons. Neuropathology and Applied Neurobiology 10, 101-121.

    Google Scholar 

  • KIM, J., SHIN, H. K. & CHUNG, J. M. (1987) Many ventral root afferent fibers in the cat are third branches of dorsal root ganglion cells. Brain Research 417, 304-314.

    Google Scholar 

  • KIM, S. H. & CHUNG, J. M. (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50, 355-363.

    Google Scholar 

  • LANGFORD, L. A. & COGGESHALL, R. E. (1979) Branching of sensory axons in the dorsal root and evidence for the absence of dorsal root efferent fibers. Journal of Comparative Neurology 184, 193-204.

    Google Scholar 

  • LANGFORD, L. A. & COGGESHALL, R. E. (1981) Branching of sensory axons in the peripheral nerve of the rat. Journal of Comparative Neurology 203, 745-750.

    Google Scholar 

  • LARSEN, J. O., TANDRUP, T. & BRAENDGAARD, H. (1994) The volume of Purkinje cells decreases in the cerebellum of acrylamide-intoxicated rats, but no cells are lost. Acta Neuropathologica 88, 307-312.

    Google Scholar 

  • LAWSON, S. N. (1979) The postnatal development of large light and small dark neurons in mouse dorsal root ganglia. Journal of Neurocytology 8, 275-294.

    Google Scholar 

  • LAWSON, S. N. & HARPER, A. A. (1985) Cell types in rat dorsal root ganglia: Mophological, immunocytochemical, and electrophysiological analyses. In Development, Organization, and Processing in Somatosensory Pathways (edited by WILLIS, JR., W. D., & ROWE, M. J.) pp. 97-103. New York: Alan R. Liss, Inc.

    Google Scholar 

  • LEKAN, H. A., CHUNG, K., YOON, Y. W., CHUNG, J. M. & COGGESHALL, R. E. (1997) Loss of dorsal root ganglion cells concomitant with dorsal root axon sprouting following segmental nerve lesions. Neuroscience 81, 527-534.

    Google Scholar 

  • LIEBERMAN, A. R. (1971) The axon reaction: A review of the principal features of perikaryal responses to axon injury. International Review of Neurobiology 14, 49-124.

    Google Scholar 

  • LIEBERMAN, A. R. (1974). Some factors affecting retrograde neuronal responses to axonal lesions. In Essays on the Nervous System. (edited by BELLAIRS, R. & GRAY, E. G.) pp. 71-105. London: Oxford University Press.

    Google Scholar 

  • LIEBERMAN, A. R. (1976) Sensory ganglia. In The Peripheral Nerve (edited by LANDON, D. N.) pp. 188-278. London: Chapman and Hall.

    Google Scholar 

  • MCCOLLISTER, D. D., OYEN, F. & ROWE, V. K. (1964) Toxicology of acrylamide. Toxicology and Applied Pharmacology 6, 172-181.

    Google Scholar 

  • MCKAY HART, A., BRANNSTROM, T., WIBERG, M. & TERENGHI, G. (2002) Primary sensory neurons and satellite cells after peripheral axotomy in the adult rat: Timecourse of cell death and elimination. Experimental Brain Research 142, 308-318.

    Google Scholar 

  • MELVILLE, S., SHERBURN, T. E. & COGGESHALL, R. E. (1989) Preservation of sensory cells by placing stumps of transected nerve in an impermeable tube. Experimental Neurology 105, 311-315.

    Google Scholar 

  • MOLLER, A., STRANGE, P. & GUNDERSEN, H. J. (1990) Efficient estimation of cell volume and number using the nucleator and the disector. Journal of Microscopy 159, 61-71.

    Google Scholar 

  • OTTO, D., UNSICKER, K. & GROTHE, C. (1987) Pharmacological effects of nerve growth factor and fibroblast growth factor applied to the transectioned sciatic nerve on neuron death in adult rat dorsal root ganglia. Neuroscience Letters 83, 156-160.

    Google Scholar 

  • PAKKENBERG, B. & GUNDERSEN, H. J. G. (1988) Total number of neurons and glial cells in human brain nuclei estimated by the disector and the fractionater. Journal of Microscopy 150, 1-20.

    Google Scholar 

  • PANNESE, E., BIANCHI, R., CALLIGARIS, B., VENTURA, R. & WEIBEL, E. R. (1972) Quantitative relationships between nerve and satellite cells in spinal ganglia. An electron microscopical study. I. Mammals. Brain Research 46, 215-234.

    Google Scholar 

  • POPKEN, G. J. & FAREL, P. B. (1997) Sensory neuron number in neonatal and adult rats estimated by means of stereologic and profile-based methods. Journal of Comparative Neurology 386, 8-15.

    Google Scholar 

  • POVER, C. M., BARNES, M. C. & COGGESHALL, R. E. (1994) Do primary afferent cell numbers change in relation to increasing weight and surface area in adult rats? Somatosensory and Motor Research 11, 163-167.

    Google Scholar 

  • PRINEAS, J. (1969) The pathogenesis of dying-back polyneuropathies. II. An ultrastructural study of experimental acrylamide intoxication in the cat. Journal of Neuropathology and Experimental Neurology 28, 598-621.

    Google Scholar 

  • RAMBOURG, A. Y., CLERMONT, T. & BEAUDET, A. (1983) Ultrastructural features of six types of neurons in rat dorsal root ganglia. Journal of Neurocytology 12, 47-66.

    Google Scholar 

  • RANVIER, M. L. (1875) Des tubes nerveux en T et de leurs relation avec les cellules ganglionnaires. Comptes Rendus De L'Academie Des Sciences (Paris) 81, 1274-1276.

    Google Scholar 

  • REN, K., THOMAS, D. A. & DUBNER, R. (1995) Nerve growth factor alleviates a painful peripheral neuropathy in rats. Brain Research 699, 286-292.

    Google Scholar 

  • RICH, K. M., DISCH, S. P. & EICHLER, M. E. (1989) The influence of regeneration and nerve growth factor on the neuronal cell body reaction to injury. Journal of Neurocytology 18, 569-576.

    Google Scholar 

  • RICH, K. M., LUSZCZYNSKI, J. R., OSBORNE, A. & JOHNSON JR., E. M. (1987) Nerve growth factor protects adult sensory neurons from cell death and atrophy caused by nerve injury. Journal of Neurocytology 16, 261-268.

    Google Scholar 

  • RISLING, M., ALDSKOGIUS, H. & HILDEBRAND, C. (1983) Effects of sciatic nerve crush on the L7 spinal roots and dorsal root ganglia in kittens. Experimental Neurology 79, 176-187.

    Google Scholar 

  • SCHIØNNING, J. D. (2000) Experimental neurotoxicity of mercury. Autometallographic and stereologic studies on rat dorsal root ganglion and spinal cord. APMIS (suppl.) 99,108, 5-32.

    Google Scholar 

  • SCHIØNNING, J. D. & LARSEN, J. O. (1997) A stereological study of dorsal root ganglion cells and nerve root fibers from rats treated with inorganic mercury. Acta Neuropathologica 94, 280-286.

    Google Scholar 

  • SCHIØNNING, J. D., LARSEN, J. O. & EIDE, R. (1998a) A stereological study of dorsal root ganglion cells and nerve root fibers from rats exposed to mercury vapor. Acta Neuropathologica 96, 185-190.

    Google Scholar 

  • SCHIØNNING, J. D., LARSEN, J. O., TANDRUP, T. & BRAENDGAARD, H. (1998b) Selective degeneration of dorsal root ganglia and dorsal nerve roots in methyl mercury-intoxicated rats: A stereological study. Acta Neuropathologica 96, 191-201.

    Google Scholar 

  • SCHMALBRUCH, H. (1987a) Loss of sensory neurons after sciatic nerve section in the rat. Anatomical Records 219, 323-329.

    Google Scholar 

  • SCHMALBRUCH, H. (1987b) The number of neurons in dorsal root ganglia L4–L6 of the rat. Anatomical Records 219, 315-322.

    Google Scholar 

  • SHI, T. J., TANDRUP, T., BERGMAN, E., XU, Z.-Q. D., ULFHAKE, B. & HÖKFELT, T. (2001) Effect of peripheral nerve injury on dorsal root ganglion neurons in the C57 BL/6J mouse: Marked changes both in cell numbers and neuropeptide expression. Neuroscience 105, 249-263.

    Google Scholar 

  • SINCLAIR, D. C., WEDDELL, G. & FEINDEL, W. H. (1948) Referred pain and associated phenomena. Brain 71, 184-211.

    Google Scholar 

  • SOMMER, E. W., KAZIMIERCZAK, J. & DROZ, B. (1985) Neuronal subpopulations in the dorsal root ganglion of the mouse as characterized by combination of ultrastructural and cytochemical features. Brain Research 346, 310-326.

    Google Scholar 

  • SORENSEN, B., TANDRUP, T., KOLTZENBURG, M. & JAKOBSEN, J. (2003) No further loss of dorsal root ganglion cells after axotomy in P75 neurotrophin receptor knockout mice. Journal of Comparative Neurology 459, 242-250.

    Google Scholar 

  • SPENCER, P. S. & SCHAUMBURG, H. H. (1976) Central peripheral distal axonopathy—the pathology of dying-back polyneuropathies. In Progress in Neuropathology vol. 3 (edited by ZIMMERMAN, H.) pp. 253-295. New York: Grune and Grune Stratton.

    Google Scholar 

  • STERIO, D. C. (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. Journal of Microscopy 134, 127-136.

    Google Scholar 

  • STOLTENBERG, M., SCHIØNNING, J. D., WEST, M. J. & DANSCHER, G. (2003) Bismuth-induced neuronal cell death in rat dorsal root ganglion: A stereological study. Acta Neuropathologica 105, 351-357.

    Google Scholar 

  • SUGIURA, Y., HOSOYA, Y., ITO, R. & KOHNO, K. (1988) Ultrastructural features of functionally identified primary afferent neurons with C (unmyelinated) fibers of the guinea pig: Classification of dorsal root ganglion cell type with reference to sensory modality. Journal of Comparative Neurology 276, 265-278.

    Google Scholar 

  • SWETT, J. E., TORIGOE, Y., ELIE, V. R., BOURASSA, C. M. & MILLER, P. G. (1991) Sensory neurons of the rat sciatic nerve. Experimental Neurology 114, 82-103.

    Google Scholar 

  • TANDRUP, T. (1993) A method for unbiased and efficient estimation of number and mean volume of specified neuron subtypes in rat dorsal root ganglion. Journal of Comparative Neurology 329, 269-276.

    Google Scholar 

  • TANDRUP, T. (1995) Are the neurons in the dorsal root ganglion pseudounipolar? A comparison of the number of neurons and number of myelinated and unmyelinated fibres in the dorsal root. Journal of Comparative Neurology 357, 341-347.

    Google Scholar 

  • TANDRUP, T. (2002) Chromatolysis of A-cells of dorsal root ganglia is a primary structural event in acute acrylamide intoxication. Journal of Neurocytology 31, 73-78.

    Google Scholar 

  • TANDRUP, T. (2004) The nucleator and the planar and optical rotators applied in rat dorsal root ganglion. In Quantitative methods in neuroscience—A neuroanatomical approach (edited by EVANS, S., JANSON, A. M. & NYENGAARD, J. R.). London: Oxford University Press (In press).

    Google Scholar 

  • TANDRUP, T. & BRAENDGAARD, H. (1992) The number and mean volume of neurons in the cerebral cortex of rats intoxicated with acrylamide. Neuropathology and Applied Neurobiology 18, 250-258.

    Google Scholar 

  • TANDRUP, T. & BRAENDGAARD, H. (1994) Number and volume of rat dorsal root ganglion cells in acrylamide intoxication. Journal of Neurocytology 23, 242-248.

    Google Scholar 

  • TANDRUP, T., GUNDERSEN, H. J. & JENSEN, E. B. (1997) The optical rotator. Journal of Microscopy 186, 108-120.

    Google Scholar 

  • TANDRUP, T. & JAKOBSEN, J. (2002) Long-term acrylamide intoxication induces atrophy of dorsal root ganglion A-cells and of myelinated sensory axons. Journal of Neurocytology 31, 79-87.

    Google Scholar 

  • TANDRUP, T., VESTERGAARD, S., TOMLINSON, D. R., DIEMEL, L. T. & JAKOBSEN, J. (1999) The structural effect of systemic NGF treatment on permanently axotomised dorsal root ganglion cells in adult rats. Journal of Anatomy 194, 373-379.

    Google Scholar 

  • TANDRUP, T., WOOLF, C. J. & COGGESHALL, R. E. (2000) Delayed loss of small dorsal root ganglion cells after transection of the rat sciatic nerve. Journal of Comparative Neurology 422, 172-180.

    Google Scholar 

  • TEWARI, H. & BOURNE, G. (1962) Histochemical evidence of metabolic cycles in spinal ganglion cells of rat. Journal of Histochemistry and Cytochemistry 10, 42-64.

    Google Scholar 

  • VESTERGAARD, S., TANDRUP, T. & JAKOBSEN, J. (1997) Effect of permanent axotomy on number and volume of dorsal root ganglion cell bodies. Journal of Comparative Neurology 388, 307-312.

    Google Scholar 

  • WATSON, W. E. (1968) Observations on the nucleolar and total cell body nucleic acid of injured nerve cells. Journal of Physiology, London 196, 655-676.

    Google Scholar 

  • WEST, M. J., SLOMIANKA, L. & GUNDERSEN, H. J. (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anatomical Records 231, 482-497.

    Google Scholar 

  • WILLIS, JR., W. D. & COGGESHALL, R. E. (1991) Dorsal root ganglion cells and their processes. In Sensory Mechanisms of the Spinal Cord, 2nd edition, pp. 47-78. New York: Plenum Press.

    Google Scholar 

  • YGGE, J. (1989) Neuronal loss in lumbar dorsal root ganglia after proximal compared to distal sciatic nerve resection: A quantitative study in the rat. Brain Research 478, 193-195.

    Google Scholar 

  • YIP, H. K. & JOHNSON JR., E. M. (1984) Developing dorsal root ganglion neurons require trophic support from their central processes: Evidence for a role of retrogradely transported nerve growth factor from the central nervous system to the periphery. Proceedings of the National Acadamy of Science, U.S.A. 81, 6245-6249.

    Google Scholar 

  • YIP, H. K., RICH, K. M., LAMPE, P. A. & JOHNSON, E. M. (1984) The effects of nerve growth factor and its antiserum on the postnatal development and survival after injury of sensory neurons in rat dorsal root ganglia. Journal of Neuroscience 4, 2986-2992.

    Google Scholar 

  • YUEN, E. C. (2001) The role of neurotrophic factors in disorders of peripheral nerves and motor neurons. Physical Medicine and Rehabilitation Clinics of North America 12, 293-306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tandrup, T. Unbiased estimates of number and size of rat dorsal root ganglion cells in studies of structure and cell survival. J Neurocytol 33, 173–192 (2004). https://doi.org/10.1023/B:NEUR.0000030693.91881.53

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000030693.91881.53

Keywords

Navigation