Skip to main content
Log in

Neocortical Dynamics: Implications for Understanding the Role of Neurofeedback and Related Techniques for the Enhancement of Attention

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

For nearly 25 years, EEG biofeedback (neurofeedback) has been utilized in research and clinical settings for the treatment and investigation of a number of disorders ranging from attention deficit hyperactivity disorder to seizure disorders as well as many other established and investigational applications. Until recently, mechanisms underlying the generation and origins of EEG have been poorly understood but now are beginning to become much more clarified. Now it is important to combine the information gathered on the genesis of EEG and neocortical dynamics with the findings from neurofeedback investigations. This will help us to develop models of how neurofeedback might operate in producing the changes in EEG and in clinical symptomatology. We know that the cortex operates in terms of resonant loops between neocortical columns of cells known as local, regional, and global resonances. These resonances determine the specific EEG frequencies and are often activated by groups of cells in the thalamus known as pacemakers. There are complex excitatory and inhibitory interactions within the cortex and between the cortex and the thalamus that allow these loops to operate and provide the basis for learning. Neurofeedback is a technique for modifying these resonant loops, and hence, modifying the neurophysiological and neurological basis for learning and for the management of a number of neurologically based disorders. This paper provides an introduction to understanding EEG and neocortical dynamics and how these concepts can be used to explain the results of neurofeedback training and other interventions particularly in the context of understanding attentive mechanisms and for the management of attention deficit/hyperactivity disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Amen, D. A., Paldi, J. H., & Thistead, R. A. (1993). Evaluating with brain SPECT imaging. Paper presented at the meeting of the American Psychiatric Association.

  • Andersen, P., & Andersson, S. A. (1968). Physiological Basis of the Alpha Rhythm. New York: Meredith Corporation.

    Google Scholar 

  • Hebb, D. O. (1949). Organization of behavior: A neuropsychological theory. New York: Wiley.

    Google Scholar 

  • Henriques, J.B., & Davidson, R. J. (1991). Left frontal hypoactivation in depression. Journal of Abnormal Psychology, 100, 534–545.

    Google Scholar 

  • Krieg, W. J. S. (1963). Connections of the cerebral cortex. Evanston, IL: Brain Books.

    Google Scholar 

  • Krieg, W. J. S. (1973). Architectronics of the human cerebral fiber systems. Evanston, IL: Brain Books.

    Google Scholar 

  • Lou, H. C., Henriksen, L., & Bruhn, P. (1984). Focal cerebral hypoprofusion in children with dysphasia and/or attention deficit disorder. Archives of Neurology, 41, 825–329.

    Google Scholar 

  • Lubar, J. F. (1991). Discourse on the development of EEG diagnostics and biofeedback treatment for attention deficit/hyperactivity disorders. Biofeedback and Self-Regulation, 16, 201–225.

    Google Scholar 

  • Lubar, J. F., & Deering, W. M. (1981). Behavioral approaches to neurology. Academic Press.

  • Lubar, J. F., Swartwood, M. O., Swartwood, J. N., & O'Donnell, P. (1995a). Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A. scores, behavioral rating, and WISC-R performance. Biofeedback and Self-Regulation, 20, 83–99.

    Google Scholar 

  • Lubar, J. F., Swartwood, M. O., Swartwood, J. N., & Timmermann, D. L. (1995b). Quantitative EEG and auditory event-related potentials in the evaluation of Attention-Deficit/Hyperactivity disorder: Effects of methylphenidate and implications for neurofeedback training. Journal of Psychoeducational Assessment (Monograph Series Advances in Psychoeducational Assessment) Assessment of Attention-Deficit/Hyperactivity Disorders, 143–204.

    Google Scholar 

  • Martin, J. H. (1991). The collective electrical behavior of cortical neurons: The electroencephalogram and the mechanisms of epilepsy. In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), Principles of Neural Science (pp. 777–791). New York: Elsevier.

    Google Scholar 

  • Matochik, J. A., Liebenauer, L. L., King, A. C., Szymanski, H. V., Cohen, R. M., & Zametkin, A. J. (1994). Cerebral glucose metabolism in adults with attention-deficit hyperactivity disorder after chronic stimulant treatment. American Journal of Psychiatry, 151, 658–664.

    Google Scholar 

  • Morison, R. S., & Basset, D. L. (1945). Electrical activity of the thalamus and basal ganglia in decorticate cats. Journal of Neurophysiology, 8, 309–314.

    Google Scholar 

  • Nunez, P. L. (1995a). Toward a physics of neocortex. In P. L. Nunez (Ed.), Neocortical Dynamics and Human EEG Rhythms (pp. 68–132). New York: Oxford University Press.

    Google Scholar 

  • Nunez, P. L. (1995b). Mind, brain, and electroencephalography. In P. L. Nunez (Ed.), Neocortical Dynamics and Human EEG Rhythms (pp. 133–194). New York: Oxford University Press.

    Google Scholar 

  • Pilgreen, K. L. (1995). Physiologic, medical, and cognitive correlates of electroencephalography. In P. L. Nunez (Ed.), Neocortical Dynamics and Human EEG Rhythms (pp. 195–248). New York: Oxford University Press.

    Google Scholar 

  • Posner, M. I., & Raichle, M. E. (1994). Images of mind. New York: Scientific American Library.

    Google Scholar 

  • Rasey, H. W., Lubar, J. E., McIntyre, A., Zoffuto, A. C., & Abbot, P.L. (1996). EEG Biofeedback for the enhancement of attentional processing in normal college students. Journal of Neurotherapy, 1, 15–31.

    Google Scholar 

  • Schwartz, M.S. (1995). Biofeedback: A practitioner's guide. NY: Guilford.

    Google Scholar 

  • Silberstein, R. B. (1995). Neuromodulation of neocortical dynamics. In P. L. Nunez (Ed.), Neocortical Dynamics and Human EEG Rhythms (pp. 591–627). New York: Oxford University Press.

    Google Scholar 

  • Steriade, M., Gloor, P., Llinas, R. R., Lopes da Silva, F. H., & Mesulam, M. M. (1990). Basic mechanisms of cerebral rhythmic activities. Electroencephalogr. Clin. Neurophysiol., 76, 481–508.

    Google Scholar 

  • Szentágothai, J. (1969). Architecture of the cerebral cortex. In H. H. Jasper, A. A. Ward, Jr. and A. Pope (Eds.), Basic Mechanisms of the Epilepsies (pp. 13–28). Boston: Little, Brown.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubar, J.F. Neocortical Dynamics: Implications for Understanding the Role of Neurofeedback and Related Techniques for the Enhancement of Attention. Appl Psychophysiol Biofeedback 22, 111–126 (1997). https://doi.org/10.1023/A:1026276228832

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026276228832

Navigation