Skip to main content
Log in

Gap junctions as electrical synapses

  • Published:
Journal of Neurocytology

Abstract

Gap junctions are the morphological substrate of one class of electrical synapse. The history of the debate on electrical vs. chemical transmission is instructive. One lesson is that Occam’s razor sometimes cuts too deep; the nervous system does its operations in a number of different ways and a unitarian approach can lead one astray. Electrical synapses can do many things that chemical synapses can do, and do them just as slowly. More intriguing are the modulatory actions that chemical synapses can have on electrical synapses. Voltage dependence provides an important window on structure function relations of the connexins, even where the dependence may have no physiological role. The new molecular approaches will greatly advance our knowledge of where gap junctions occur and permit experimental manipulation with high specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Auerbach, A. A. & Bennett, M. V. L. (1969a) Chemically mediated transmission at a giant fibre synapse in the central nervous system of a vertebrate. Journal of General Physiology 53, 183–210.

    Google Scholar 

  • Auerbach, A. A. & Bennett, M. V. L. (1969b) A rectifying electrotonic synapse in the central nervous system of a vertebrate. Journal of General Physiology 53, 211–37.

    Google Scholar 

  • Baker, R. & Llinas, R. (1971) Electronic coupling between neurons in the rat mesencephalic nucleus. Journal of Physiology 212, 45–63.

    Google Scholar 

  • Barnes, T. M. (1994) OPUS: a growing family of gap junction proteins? Trends in Genetics 10, 303–5.

    Google Scholar 

  • Barrio, L. C., Suchyna, T., Bargiello, T., Xu, L. X., Roginski, R. S., Bennett, M. V. L. & Nicholson, B. J. (1991) Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage [published erratum appears in Proceedings of the National Academy of Sciences (USA) 1992 May 1, 4220]. Proceedings of the National Academy of Sciences (USA) 88, 8410–14.

    Google Scholar 

  • Bennett, M. V. L., Zheng, X. & Sogin, M. L. (1994) The connexins and their family tree. Society of General Physiologists Series 49, 223–33.

    Google Scholar 

  • Bennett, M. V. L. (1966) Physiology of electronic junctions. Annals of the New York Academy of Sciences 137, 509–39.

    Google Scholar 

  • Bennett, M. V. L. (1968) Neural control of electric organs. In The Central Nervous System and Fish Behavior (edited by Ingle, D.) pp. 147–69. Chicago: Chicago University Press.

    Google Scholar 

  • Bennett, M. V. L. (1971) Electric organs. In Fish Physiology (edited by Hoar, W. S. & Randall, D. J.) pp. 347–491. New York: Academic Press.

    Google Scholar 

  • Bennett, M. V. L. (1977) Electrical transmission: a functional analysis and comparison to chemical transmission. In The Handbook of Physiology – The Nervous System I (edited by Kandel, E. R.) pp. 357–416. Washington: American Physiological Society.

    Google Scholar 

  • Bennett, M. V. L. (1985) Nicked by Occam's razor: unitarianism in the investigation of synaptic transmission. Biological Bulletin 168, 159–67.

    Google Scholar 

  • Bennett, M. V. L., Barrio, L. C., Bargiello, T. A., Spray, D. C., Hertzberg, E. & Saez, J. C. (1991) Gap junctions: new tools, new answers, new questions. Neuron 6, 305–20.

    Google Scholar 

  • Bennett, M. V. L., Crain, S. M. & Grundfest, H. (1959a) Electrophysiology of supramedullary neurons in Spheroides maculatus. I. Orthodromic and antidromic responses. Journal of General Physiology 43, 159–88.

    Google Scholar 

  • Bennett, M. V. L., Crain, S. M. & Grundfest, H. (1959b) Electrophysiology of supramedullary neurons in Spheroides maculatus. III. Organization of the supramedullary neurons. Journal of General Physiology 43, 221–50.

    Google Scholar 

  • Bennett, M. V. L., Nakjima, Y. & Pappas, G. D. (1967a) Physiology and ultrastructure of electrotonic junctions. I. Supramedullary neurons. Journal of Neurophysiology 30, 161–79.

    Google Scholar 

  • Bennett, M. V. L., Nakajima, Y. & Pappas, G. D. (1967b) Physiology and ultrastructure of electrotonic junctions. III. Giant electromotor neurons of Malapterurus electricus. Journal of Neurophysiology 30, 209–35.

    Google Scholar 

  • Bennett, M. V. L. & Pappas, G. D. (1983) The electromotor system of the stargazer: a model for integrative actions at electrotonic synapses. Journal of Neuroscience 3, 748–61.

    Google Scholar 

  • Bennett, M. V. L., Verselis, V., White, R. L. & Spray, D. C. (1988) Gap junctional conductance: Gating. In Gap Junctions (edited by Hertzberg, E. L. & Johnson, R. G.) pp. 287–304. New York: Alan R. Liss, Inc.

    Google Scholar 

  • Blackshaw, S. E. & Warner, A. E. (1976) Alterations in resting membrane properties during neural plate stages of development of the nervous system. Journal of Physiology 255, 231–47.

    Google Scholar 

  • Bodian, D. (1938) The structure of the vertebrate synapse. A study of the axon endings on Mauthner's cell and neighboring centers in the goldfish. Journal of Comparative Neurology 68, 117–59.

    Google Scholar 

  • Bukauskas, F. F., Elfgang, C., Willecke, K. & Weingart, R. (1995) Heterotypic gap junction channels (connexin26-connexin32) violate the paradigm of unitary conductance. Pflüger's Archiv 429, 870–2.

    Google Scholar 

  • Burt, J. M. & Spray, D. C. (1989) Volatile anesthetics block intercellular communication between neonatal rat myocardial cells. Circulation Research 65, 829–37.

    Google Scholar 

  • Calakos, N. & Scheller, R. H. (1996) Synaptic vesicle biogenesis, docking, and fusion: a molecular description. Physiological Reviews 76, 1–29.

    Google Scholar 

  • Carr, C. E. & Boudreau, R. E. (1993) Organization of the nucleus magnocellularis and the nucleus laminaris in the barn owl: encoding and measuring interaural time differences. Journal of Comparative Neurology 334, 337–55.

    Google Scholar 

  • Chang, M., Dahl, C. & Werner, R. (1994) Is the role of connexin 33 an inhibitory one? Biophysical Journal 66, A20.

    Google Scholar 

  • Christensen, B. N. (1983) Distribution of electrotonic synapses on identified lamprey neurons: a comparison of a model prediction with an electron microscopic analysis. Journal of Neurophysiology 49, 705–16.

    Google Scholar 

  • Dani, J. W. & Smith, S. J. (1995) The triggering of astrocytic calcium waves by NMDA-induced neuronal activation. Ciba Foundation Symposia 188, 195–205.

    Google Scholar 

  • Dowling, J. E. (1991) Retinal neuromodulation: the role of dopamine. Visual Neuroscience 7, 87–97.

    Google Scholar 

  • Dudek, F. E., Snow, R. W. & Taylor, C. P. (1986) Role of electrical interactions in synchronization of epileptiform bursts. Advances in Neurology 44, 593–617.

    Google Scholar 

  • Eccles, J. C. (1964) The Physiology of Synapses. Berlin: Springer Verlag.

    Google Scholar 

  • Ek, J. F., Delmar, M., Perzova, R. & Taffet, S. M. (1994) Role of histidine 95 on pH gating of the cardiac gap junction protein connexin43. Circulation Research 74, 1058–64.

    Google Scholar 

  • Elfgang, C., Eckert, R., Lichtenberg-Frate, H., Butterweck, A., Traub, O., Klein, R. A., Hulser, D. F. & Willecke, K. (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. Journal of Cell Biology 129, 805–17.

    Google Scholar 

  • Faber, D. S. & Korn, H. (1989) Electrical field effects: their relevance in central neural networks. Physiological Reviews 69, 821–63.

    Google Scholar 

  • Fatt, P. (1954) Biophysics of junctional transmission. Physiological Reviews 34, 674–710.

    Google Scholar 

  • Furshpan, E. J. & Furukawa, T. (1962) Intracellular and extracellular responses of the several regions of the Mauthner cell of the goldfish. Journal of Neurophysiology 25, 732–71.

    Google Scholar 

  • Furshpan, E. J. & Potter, D. D. (1959) Transmission at the giant motor synapses of the crayfish. Journal of Physiology 145, 289–325.

    Google Scholar 

  • Furukawa, T. & Furshpan, E. J. (1993) Two inhibitory mechanisms in the Mauthner neurons of goldfish. Journal of Neurophysiology 26, 140–76.

    Google Scholar 

  • Goliger, J. A. & Paul, D. L. (1994) Expression of gap junction proteins Cx26, Cx31.1, Cx37, and Cx43 in developing and mature rat epidermis. Developmental Dynamics 200, 1–13.

    Google Scholar 

  • Hall, D. H., Gilat, E. & Bennett, M. V. L. (1985) Ultrastructure of the rectifying electronic synapses between giant fibres and pectoral fin adductor motor neurons in the hatchetfish. Journal of Neurocytology 14, 825–34.

    Google Scholar 

  • Hampson, E. C., Weiler, R. & Vaney, D. I. (1994) pH-gated dopaminergic modulation of horizontal cell gap junctions in mammalian retina. Proceedings of the Royal Society of London, Series B 255, 67–72.

    Google Scholar 

  • Harris, A. L., Spray, D. C. & Bennett, M. V. L. (1981) Kinetic properties of a voltage-dependent junctional conductance. Journal of General Physiology 77, 95–117.

    Google Scholar 

  • Harris, A. L., Spray, D. C. & Bennett, M. V. (1983) Control of intercellular communication by voltage dependence of gap junctional conductance. Journal of Neuroscience 3, 79–100.

    Google Scholar 

  • Hassinger, T. D., Guthrie, P. B., Atkinson, P. B., Bennett, M. V. L. & Kater, S. B. (1996) An extracellular signalling component in propagation of astrocytic calcium waves. Proceedings of the National Academy of Sciences (USA) 93, 13268–72.

    Google Scholar 

  • Hatton, G. I. & Yang, Q. Z. (1994) Incidence of neuronal coupling in supraoptic nuclei of virgin and lactating rats: estimation by neurobiotin and lucifer yellow. Brain Research 650, 63–9.

    Google Scholar 

  • Hinrichsen, C. F. L. & Larramendi, L. M. H. (1968) Synapses and cluster formation of the mouse memsecephalic fifth nucleus. Brain Research 7, 296–99.

    Google Scholar 

  • Jefferys, J. G. R. (1995) Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. [Review]. Physiological Review 75, 689–723.

    Google Scholar 

  • Johnston, M. F., Simon, S. A. & Ramon, F. (1980) Interaction of anaesthetics with electrical synapses. Nature 286, 498–500.

    Google Scholar 

  • Knier, J., Verselis, V. K. & Spray, D. C. (1986) Gap junctions between tunicate blastomeres: gating similarities and differences compared to amphibia. Biophysical Journal 49, 203a.

    Google Scholar 

  • Korn, H. & Bennett, M. V. L. (1975) Vestibular nystagmus and teleost oculomotor neurons: functions of electrotonic coupling and dendritic impulse initiation. Journal of Neurophysiology 38, 430–51.

    Google Scholar 

  • Korn, H., Sotelo, C & Crepel, F. (1973) Electronic coupling between neurons in the rat lateral vestibular nucleus. Experimental Brain Research 16, 255–75.

    Google Scholar 

  • Kriebel, M. E., Bennett, M. V. L., Waxman, S. G. & Pappas, G. D. (1969) Oculomotor neurons in fish: electrotonic coupling and multiple sites of impulse initiation. Science 166, 520–4.

    Google Scholar 

  • Lin, J. W. & Faber, D. S. (1988) Synaptic transmission mediated by single club endings on the goldfish Mauthner cell. I. Characteristics of electrotonic and chemical postsynaptic potentials. Journal of Neuroscience 8, 1302–12.

    Google Scholar 

  • Llinas, R., Baker, R. & Sotelo, C. (1974) Electrotonic coupling between neurons in cat inferior olive. Journal of Neurophysiology 37, 560–71.

    Google Scholar 

  • Martin, A. R. & Pilar, G. (1963) Dual mode of synaptic transmission in the avian ciliary ganglion. Journal of Physiology 168, 443–63.

    Google Scholar 

  • Meszler, R. M., Pappas, G. D. & Bennett, M. V. L. (1974) Morphology of the electromotor system in the spinal cord of the electric eel, Electrophorus electricus. Journal of Neurocytology 251–61.

  • Meyer, R. A., Laird, D. W., Revel, J. P. & Johnson, R. G. (1992) Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. Journal of Cell Biology 119, 179–89.

    Google Scholar 

  • Moore, L. K. & Burt, J. M. (1994) Selective block of gap junction channel expression with connexin-specific antisense oligodeoxynucleotides. American Journal of Physiology 267, C1371–80.

    Google Scholar 

  • Moreno, A. P., Rook, M. B., Fishman, G. I. & Spray, D. C. (1994) Gap junction channels: distinct voltagesensitive and-insensitive conductance states. Biophysical Journal 67, 113–19.

    Google Scholar 

  • Mushegian, A. R. & Koonin, E. V. (1993) The proposed plant connexin is a protein kinase-like protein [letter]. Plant Cell 5, 998–9.

    Google Scholar 

  • Nelles, E., BÜtzler, C., Jung, D., Temme, A., Gabriel, H.-D., Dahl, U., Traub, O., StÜmpel, F., Jungermann, K., Zielasek, J., Toyka, K. V., Dermietzel, R. & Willecke, K. (1996) Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice. Proceedings of the National Academy of Sciences (USA) 93, 9565–70.

    Google Scholar 

  • Neyton, J. & Trautmann, A. (1985) Single-channel currents of an intercellular junction. Nature 317, 331–5.

    Google Scholar 

  • Oliveira-Castro, G. M. & Loewenstein, W. R. (1971) Junctional membrane permeability. Effects of divalent cations. Journal of Membrane Biology 5, 51–77.

    Google Scholar 

  • Osipchuk, Y. & Cahalan, M. (1992) Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 359, 241–4.

    Google Scholar 

  • Pappas, G. D. & Bennett, M. V. L. (1986) Specialized junctions involved in electrical transmission between neurons. Annals of the New York Academy of Sciences 137, 495–508.

    Google Scholar 

  • Peinado, A., Yuste, R. & Katz, L. C. (1993) Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10, 103–14.

    Google Scholar 

  • Pereda, A. E. & Faber, D. S. (1996) Activity-dependent short-term enhancement of intercellular coupling. Journal of Neuroscience 16, 983–92.

    Google Scholar 

  • Perez-Armendariz, E. M., Romano, M. C., Luna, J., Miranda, C., Bennett, M. V. L & Moreno, A. P. (1994) Characterization of gap junctions between pairs of Leydig cells from mouse testis. American Journal of Physiology 267, C570–80.

    Google Scholar 

  • Piccolino, M., Neyton, J. & Gerschenfeld, H. M. (1984) Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3':5'-monophosphate in horizontal cells of turtle retina. Journal of Neuroscience 4, 2477–88.

    Google Scholar 

  • Pinching, A. J. & Powell, T. P. S. (1971) The neuropil of the glomeruli of the olfactory bulb. Journal of Cell Science 9, 347–77.

    Google Scholar 

  • Rash, J. E., Dillman, R. K., Bilhartz, B. L., Duffy, H. S., Whalen, L. R. & Yasumura, T. (1996) Mixed synapses discovered and mapped throughout mammalian spinal cord. Proceedings of the National Academy of Sciences (USA) 93, 4235–9.

    Google Scholar 

  • Reaume, A. G., de Sousa, P. A., Kulkarni, S., Langille, B. L., Zhu, D., Davies, T. C., Juneja, S. C., Kidder, G. M. & Rossant, J. (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267, 1831–4.

    Google Scholar 

  • Reed, K. E., Westphale, E. M., Larson, D. M., Wang, H. Z., Veenstra, R. D. & Beyer, E. C. (1993) Molecular cloning and functional expression of human connexin37, an endothelial cell gap junction protein. Journal of Clinical Investigation 91, 997–1004.

    Google Scholar 

  • Rorig, B., Klausa, G. & Sutor, B. (1995) Dye coupling between pyramidal neurons in developing rat prefrontal and frontal cortex is reduced by protein kinase A activation and dopamine. Journal of Neuroscience 15, 7386–400.

    Google Scholar 

  • Saez, J. C., Connor, J. A., Spray, D. C. & Bennett, M. V. L. (1989) Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proceedings of the National Academy of Sciences (USA) 86, 2708–12.

    Google Scholar 

  • Saez, J. C., Nairn, A. C., Czernik, A. J., Spray, D. C., Hertzberg, E. L., Greengard, P. & Bennett, M. V. L. (1990) Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulindependent protein kinase II. European Journal of Biochemistry 192, 263–73.

    Google Scholar 

  • Sanderson, M. J. (1995) Intracellular calcium waves mediated by inositol trisphosphate. Ciba Foundation Symposia 188, 175–89.

    Google Scholar 

  • Silva, A., Kumar, S., Pereda, A. & Faber, D. S. (1995) Regulation of synaptic strength at mixed synapses: effects of dopamine receptor blockade and protein kinase C activation. Neuropharmacology 34, 1559–65.

    Google Scholar 

  • Sloper, J. J. (1972) Gap junctions between dendrites in the primate neocortex. Brain Research 44, 641–6.

    Google Scholar 

  • Sotelo, C. & Llinas, R. (1972) Specialized membrane junctions between neurons in vertebrate cerebellar cortex. Journal of Cell Biology 53, 271–89.

    Google Scholar 

  • Spira, M. E. & Bennett, M. V. L. (1972) Synaptic control of electrotonic coupling between neurons. Brain Research 37, 294–300.

    Google Scholar 

  • Spira, M. E., Spray, D. C. & Bennett, M. V. L. (1980) Synaptic organization of expansion motoneurons of Navanax inermis. Brain Research 195, 241–69.

    Google Scholar 

  • Spray, D. C., Harris, A. L. & Bennett, M. V. L. (1981a) Equilibrium properties of a voltage-dependent junctional conductance. Journal of General Physiology 77, 77–93.

    Google Scholar 

  • Spray, D. C., Harris, A. L. & Bennett, M. V. L. (1981b) Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211, 712–15.

    Google Scholar 

  • Stauffer, K. A. (1995) The gap junction proteins beta 1-connexin (connexin-32) and beta 2-connexin (connexin-26) can form heteromeric hemichannels. Journal of Biological Chemistry 270, 6768–72.

    Google Scholar 

  • Teranishi, T., Negishi, K. & Kato, S. (1983) Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina. Nature 301, 243–6.

    Google Scholar 

  • Trexler, E. B., Bennett, M. V. L., Bargiello, T. A. & Verselis, V. K. (1996) Voltage gating and permeation in a gap junction hemichannel. Proceedings of the National Academy of Sciences (USA) 93, 5836–41.

    Google Scholar 

  • Turin, L. & Warner, A. E. (1977) Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature 270, 56–7.

    Google Scholar 

  • Tuttle, R., Masuko, S. & Nakajima, Y. (1986) Freeze-fracture study of the large myelinated club ending synapse on the goldfish Mauthner cell: special reference to the quantitative analysis of gap junctions. Journal of Comparative Neurology 246, 202–11.

    Google Scholar 

  • Valiante, T. A., Perez Velazquez, J. L., Jahromi, S. S. & Carlen, P. L. (1995) Coupling potentials in CA1 neurons during calcium-free-induced field burst activity. Journal of Neuroscience 15, 6946–56.

    Google Scholar 

  • Vaney, D. I. (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or neurobiotin. Neuroscience Letters 125, 187–90.

    Google Scholar 

  • Veenstra, R. D., Wang, H. Z., Beyer, E. C. & Brink, P. R. (1994) Selective dye and ionic permeability of gap junction channels formed by connexin45. Circulation Research 75, 483–90.

    Google Scholar 

  • Veenstra, R. D., Wang, H. Z., Beblo, D. A., Chilton, M. G., Harris, A. L., Beyer, E. C. & Brink, P. R. (1995) Selectivity of connexin-specific gap junctions does not correlate with channel conductance. Circulation Research 77, 1156–65.

    Google Scholar 

  • Verselis, V. K., Bennett, M. V. L. & Bargiello, T. A. (1991) A voltage-dependent gap junction in Drosophila melanogaster. Biophysical Journal 59, 114–26.

    Google Scholar 

  • Verselis, V. K., Ginter, C. S. & Bargiello, T. A. (1994) Opposite voltage gating polarities of two closely related connexins. Nature 368, 348–51.

    Google Scholar 

  • Watanabe, A. (1958) The interaction of electrical activity among neurons of lobster cardiac ganglion. Japanese Journal of Physiology 8, 305–18.

    Google Scholar 

  • White, T. W., Bruzzone, R. & Paul, D. L. (1995a) The connexin family of intercellular channel forming proteins. Kidney International 48, 1148–57.

    Google Scholar 

  • White, T. W., Paul, D. L., Goodenough, D. A. & Bruzzone, R. (1995b) Functional analysis of selective interactions among rodent connexins. Molecular Biology of the Cell 6, 459–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, M.V.L. Gap junctions as electrical synapses. J Neurocytol 26, 349–366 (1997). https://doi.org/10.1023/A:1018560803261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018560803261

Keywords

Navigation