Skip to main content
Log in

Factors that affect regulation of cGMP synthesis in vertebrate photoreceptors and their genetic link to human retinal degeneration

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cyclic GMP is essential for the ability of rods and cones to respond to the light stimuli. Light triggers hydrolysis of cGMP and stops the influx of sodium and calcium through the cGMP-gated ion channels. The consequence of this event is 2-fold: first, the decrease in the inward sodium current plays the major role in an abrupt hyperpolarization of the cellular membrane; secondly, the decrease in the Ca2+ influx diminishes the free intracellular Ca2+ concentration. While the former constitutes the essence of the phototransduction pathway in rods and cones, the latter gives rise to a potent feedback mechanism that accelerates photoreceptor recovery and adaptation to background light. One of the most important events by which Ca2+ feedback controls recovery and light adaptation is synthesis of cGMP by guanylyl cyclase. Two isozymes of membrane photoreceptor guanylyl cyclase (retGC) have been identified in rods and cones that are regulated by Ca2+-binding proteins, GCAPs. At low intracellular concentrations of Ca2+ typical for light-adapted rods and cones GCAPs activate RetGC, but concentrations above 500 nM typical for dark-adapted photoreceptors turn them into inhibitors of retGC. A variety of mutations found in GCAP and retGC genes have been linked to several forms of human congenital retinal diseases, such as dominant cone degeneration, cone-rod dystrophy and Leber congenital amaurosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pugh EN Jr, Lamb TD: Amplification and kinetics of the activation steps in phototransduction. Biochim Biophys Acta 1141: 111–149, 1993

    Google Scholar 

  2. Baylor D: How photons start vision. Proc Natl Acad Sci USA 93: 560–565, 1996

    Google Scholar 

  3. Molday RS: Photoreceptor membrane proteins, phototransduction, and retinal degenerative diseases. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 39: 2491–2513, 1998

    Google Scholar 

  4. Pugh EN Jr, Nikonov S, Lamb TD: Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr Opin Neurobiol 9: 410–418, 1999

    Google Scholar 

  5. Gray-Keller MP, Detwiler PB: The calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron 13: 849–861, 1994

    Google Scholar 

  6. Sampath AP, Matthews HR, Cornwall MC, Bandarchi J, Fain GL: Light-dependent changes in outer segment free-Ca2+ concentration in salamander cone photoreceptors. J Gen Physiol 113: 267–277, 1999

    Google Scholar 

  7. Hsu YT, Molday RS: Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature 361: 76–79, 1993

    Google Scholar 

  8. Hackos DH, Korenbrot JI: Calcium modulation of ligand affinity in the cyclic GMP-gated ion channels of cone photoreceptors. J Gen Physiol 110: 515–528, 1997

    Google Scholar 

  9. Kawamura S: Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature 362: 855–857, 1993

    Google Scholar 

  10. Pugh EN Jr, Duda T, Sitaramayya A, Sharma RK: Photoreceptor guanylate cyclases: A review. Biosci Rep 17: 429–473, 1997

    Google Scholar 

  11. Dizhoor AM: Regulation of cGMP synthesis in photoreceptors: Role in signal transduction and congenital diseases of the retina. Cell Sig 12: 711–719, 2000

    Google Scholar 

  12. Palczewski K, Polans AS, Baehr W, Ames JB: Ca(2+)-binding proteins in the retina: Structure, function, and the etiology of human visual diseases. Bioessays 22: 337–350, 2000

    Google Scholar 

  13. Koch KW, Stryer L: Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 334: 64–66, 1988

    Google Scholar 

  14. Fleischman D, Denisevich M, Raveed D, Pannbacker RG: Association of guanylate cyclase with the axoneme of retinal rods. Biochim Biophys Acta 630: 176–186, 1980

    Google Scholar 

  15. Hayashi F, Yamazaki A: Polymorphism in purified guanylate cyclase from vertebrate rod photoreceptors. Proc Natl Acad Sci USA 88: 4746–4750, 1991

    Google Scholar 

  16. Koch KW: Purification and identification of photoreceptor guanylate cyclase. J Biol Chem 266: 8634–8637, 1991

    Google Scholar 

  17. Shyjan AW, de Sauvage FJ, Gillett NA, Goeddel DV, Lowe DG: Molecular cloning of a retina-specific membrane guanylyl cyclase. Neuron 9: 727–737, 1992

    Google Scholar 

  18. Lowe DG, Dizhoor AM, Liu K, Gu Q, Spencer M, Laura R, Lu L, Hurley JB: Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc Natl Acad Sci USA 92: 5535–5539, 1995

    Google Scholar 

  19. Margulis A, Goraczniak RM, Duda T, Sharma RK, Sitaramayya A: Structural and biochemical identity of retinal rod outer segment membrane guanylate cyclase. Biochem Biophys Res Commun 194: 855–861, 1993

    Google Scholar 

  20. Dizhoor AM, Lowe DG, Olshevskaya EV, Laura RP, Hurley JB: The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 12: 1345–1352, 1994

    Google Scholar 

  21. Yang RB, Foster DC, Garbers DL, Fulle HJ: Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci USA 92: 602–606, 1995

    Google Scholar 

  22. Goraczniak R, Duda T, Sharma RK: Structural and functional characterization of a second subfamily member of the calcium-modulated bovine rod outer segment membrane guanylate cyclase, ROS-GC2. Biochem Biophys Res Commun 234: 666–670, 1997

    Google Scholar 

  23. Liu X, Seno K, Nishizawa Y, Hayashi F, Yamazaki A, Matsumoto H, Wakabayashi T, Usukura J: Ultrastructural localization of retinal guanylate cyclase in human and monkey retinas. Exp Eye Res 59: 761–768, 1994

    Google Scholar 

  24. Yang RB, Robinson SW, Xiong WH, Yau KW, Birch DG, Garbers DL: Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J Neurosci 19: 5889–5897, 1999

    Google Scholar 

  25. Garbers DL, Lowe DG: Guanylyl cyclase receptors. J Biol Chem 269: 30741–30744, 1994

    Google Scholar 

  26. Garbers DL: The guanylyl cyclase receptors. Methods 19: 477–484, 1999

    Google Scholar 

  27. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA: Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52: 375–414, 2000

    Google Scholar 

  28. Foster DC, Wedel BJ, Robinson SW, Garbers DL: Mechanisms of regulation and functions of guanylyl cyclases. Rev Physiol Biochem Pharmacol 135: 1–39, 1999

    Google Scholar 

  29. Duda T, Venkataraman V, Jankowska A, Lange C, Koch KW, Sharma RK: Impairment of the rod outer segment membrane guanylate cyclase dimerization in a cone-rod dystrophy results in defective calcium signaling. Biochemistry 39: 12522–12533, 2000

    Google Scholar 

  30. Wilkie SE, Newbold RJ, Deery E, Walker CE, Stinton I, Ramamurthy V, Hurley JB, Bhattacharya SS, Warren MJ, Hunt DM: Functional characterization of missense mutations at codon 838 in retinal guanylate cyclase correlates with disease severity in patients with autosomal dominant cone-rod dystrophy. Hum Mol Genet 9: 3065–3973, 2000

    Google Scholar 

  31. Dizhoor AM, Hurley JB: Regulation of photoreceptor membrane guanylyl cyclases by guanylyl cyclase activator proteins. Methods 19: 521–531, 1999

    Google Scholar 

  32. Gorczyca WA, Gray-Keller MP, Detwiler PB, Palczewski K: Purification and physiological evaluation of a guanylate cyclase activating protein from retinal rods. Proc Natl Acad Sci USA 91: 4014–4018, 1994

    Google Scholar 

  33. Haeseleer F, Sokal I, Li N, Pettenati M, Rao N, Bronson D, Wechter R, Baehr W, Palczewski K: Molecular characterization of a third member of the guanylyl cyclase-activating protein subfamily. J Biol Chem 274: 6526–6535, 1999

    Google Scholar 

  34. Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, Hurley JB: Cloning, sequencing, and expression of a 24-kDa Ca(2+)-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem 270: 25200–25206, 1995

    Google Scholar 

  35. Howes K, Bronson JD, Dang YL, Li N, Zhang K, Ruiz C, Helekar B, Lee M, Subbaraya I, Kolb H, Chen J, Baehr W: Gene array and expression of mouse retina guanylate cyclase activating proteins 1 and 2. Invest Ophthalmol Vis Sci 39: 867–875, 1998

    Google Scholar 

  36. Kachi S, Nishizawa Y, Olshevskaya E, Yamazaki A, Miyake Y, Wakabayashi T, Dizhoor A, Usukura J: Detailed localization of photoreceptor guanylate cyclase activating protein-1 and-2 in mammalian retinas using light and electron microscopy. Exp Eye Res 68: 465–473, 1999

    Google Scholar 

  37. Payne AM, Downes SM, Bessant DA, Taylor R, Holder GE, Warren MJ, Bird AC, Bhattacharya SS: A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet 7: 273–277, 1998

    Google Scholar 

  38. Mendez A, Burns ME, Sokal I, Baehr J, Palczewski K, Baylor D: Invest Ophthalmol Vis Sci 40: 2056, 1999

    Google Scholar 

  39. Nef P: In: M.R. Celio, T. Pauls, B. Schwaller (eds). Guidebook to the Calcium-binding Proteins. Oxford University Press, New York, 1996, pp 94–120

    Google Scholar 

  40. Ames JB, Dizhoor AM, Ikura M, Palczewski K, Stryer L: Three-dimensional structure of guanylyl cyclase activating protein-2, a calciumsensitive modulator of photoreceptor guanylyl cyclases. J Biol Chem 274: 19329–19337, 1999

    Google Scholar 

  41. Dizhoor AM, Hurley JB: Inactivation of EF-hands makes GCAP-2 (p24) a constitutive activator of photoreceptor guanylyl cyclase by preventing a Ca2+-induced ‘activator-to-inhibitor’ transition. J Biol Chem 271: 19346–19350, 1996

    Google Scholar 

  42. Otto-Bruc A, Buczylko J, Surgucheva I, Subbaraya I, Rudnicka-Nawrot M, Crabb JW, Arendt A, Hargrave PA, Baehr W, Palczewski K: Functional reconstitution of photoreceptor guanylate cyclase with native and mutant forms of guanylate cyclase-activating protein 1. Biochemistry 36: 4295–4302, 1997

    Google Scholar 

  43. Olshevskaya EV, Hughes RE, Hurley JB, Dizhoor AM: Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase. J Biol Chem 272: 14327–14333, 1997

    Google Scholar 

  44. Olshevskaya EV, Boikov S, Ermilov A, Krylov D, Hurley JB, Dizhoor AM: Mapping functional domains of the guanylate cyclase regulator protein, GCAP-2. J Biol Chem 274: 10823–10832, 1999

    Google Scholar 

  45. Goraczniak RM, Duda T, Sharma RK: Calcium modulated signaling site in type 2 rod outer segment membrane guanylate cyclase (ROSGC2). Biochem Biophys Res Commun 245: 447–453, 1998

    Google Scholar 

  46. Krylov DM, Niemi GA, Dizhoor AM, Hurley JB: Mapping sites in guanylyl cyclase activating protein-1 required for regulation of photoreceptor membrane guanylyl cyclases. J Biol Chem 274: 10833–10839, 1999

    Google Scholar 

  47. Beuve A: Conversion of a guanylyl cyclase to an adenylyl cyclase. Methods 19: 545–550, 1999

    Google Scholar 

  48. Tucker CL, Hurley JH, Miller TR, Hurley JB: Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase. Proc Natl Acad Sci USA 95: 5993–5997, 1998

    Google Scholar 

  49. Yang RB, Garbers DL: Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J Biol Chem 272: 13738–13742, 1997

    Google Scholar 

  50. Yu H, Olshevskaya E, Duda T, Seno K, Hayashi F, Sharma RK, Dizhoor AM, Yamazaki A: Activation of retinal guanylyl cyclase-1 by Ca2+-binding proteins involves its dimerization. J Biol Chem 274: 15547–15555, 1999

    Google Scholar 

  51. Olshevskaya EV, Ermilov AN, Dizhoor AM: Dimerization of guanylyl cyclase-activating protein and a mechanism of photoreceptor guanylyl cyclase activation. J Biol Chem 274: 25583–25587, 1999

    Google Scholar 

  52. Tucker CL, Woodcock SC, Kelsell RE, Ramamurthy V, Hunt DM, Hurley JB: Biochemical analysis of a dimerization domain mutation in RetGC-1 associated with dominant cone-rod dystrophy. Proc Natl Acad Sci USA 96: 9039–9044, 1999

    Google Scholar 

  53. Sokal I, Haeseleer F, Arendt A, Adman ET, Hargrave PA, Palczewski K: Identification of a guanylyl cyclase-activating protein-binding site within the catalytic domain of retinal guanylyl cyclase 1. Biochemistry 38: 1387–1393, 1999

    Google Scholar 

  54. Laura RP, Hurley JB: The kinase homology domain of retinal guanylyl cyclases 1 and 2 specifies the affinity and cooperativity of interaction with guanylyl cyclase activating protein-2. Biochemistry 37: 11264–11271, 1998

    Google Scholar 

  55. Lange C, Duda T, Beyermann M, Sharma RK, Koch KW: Regions in vertebrate photoreceptor guanylyl cyclase ROS-GC1 involved in Ca(2+)-dependent regulation by guanylyl cyclase-activating protein GCAP-1. FEBS Lett 460: 27–31, 1999

    Google Scholar 

  56. Dizhoor AM, Boikov SG, Olshevskaya EV: Constitutive activation of photoreceptor guanylate cyclase by Y99C mutant of GCAP-1. Possible role in causing human autosomal dominant cone degeneration. J Biol Chem 273: 17311–17314, 1998

    Google Scholar 

  57. Sokal I, Li N, Surgucheva I, Warren MJ, Payne AM, Bhattacharya SS, Baehr W, Palczewski K: GCAP1 (Y99C) mutant is constitutively active in autosomal dominant cone dystrophy. Mol Cell 2: 129–133, 1998

    Google Scholar 

  58. He L, Poblenz AT, Medrano CJ, Fox DA: Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. J Biol Chem 275: 12175–12184, 2000

    Google Scholar 

  59. Pugh EN Jr, Lamb TD: Cyclic GMP and calcium: The internal messengers of excitation and adaptation in vertebrate photoreceptors. Vision Res 30: 1923–1948, 1990

    Google Scholar 

  60. Perrault I, Rozet JM, Calvas P, Gerber S, Camuzat A, Dollfus H, Chatelin S, Souied E, Ghazi I, Leowski C, Bonnemaison M, Le Paslier D, Frezal J, Dufier JL, Pittler S, Munnich A, Kaplan J: Retinal-specific guanylate cyclase gene mutations in Leber's congenital amaurosis. Nat Genet 14: 461–464, 1996

    Google Scholar 

  61. Duda T, Venkataraman V, Goraczniak R, Lange C, Koch KW, Sharma RK: Functional consequences of a rod outer segment membrane guanylate cyclase (ROS-GC1) gene mutation linked with Leber's congenital amaurosis. Biochemistry 38: 509–515, 1999

    Google Scholar 

  62. Kelsell RE, Gregory-Evans K, Payne AM, Perrault I, Kaplan J, Yang RB, Garbers DL, Bird AC, Moore AT, Hunt DM: Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet 7: 1179–1184, 1998

    Google Scholar 

  63. Perrault I, Rozet JM, Gerber S, Kelsell RE, Souied E, Cabot A, Hunt DM, Munnich A, Kaplan J: A retGC-1 mutation in autosomal dominant cone-rod dystrophy. Am J Hum Genet 63: 651–654, 1998

    Google Scholar 

  64. Duda T, Krishnan A, Venkataraman V, Lange C, Koch KW, Sharma RK: Mutations in the rod outer segment membrane guanylate cyclase in a cone-rod dystrophy cause defects in calcium signaling. Biochemistry 38: 13912–13919, 1999

    Google Scholar 

  65. Wilkie SE, Li Y, Deery EC, Newbold RJ, Garibaldi D, Bateman JB, Zhang H, Lin W, Zack DJ, Bhattacharya SS, Warren MJ, Hunt DM, Zhang K: Identification and functional consequences of a new mutation (E155G) in the gene for GCAP1 that causes autosomal dominant cone dystrophy. Am J Hum Genet 69: 471–480, 2001

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olshevskaya, E.V., Ermilov, A.N. & Dizhoor, A.M. Factors that affect regulation of cGMP synthesis in vertebrate photoreceptors and their genetic link to human retinal degeneration. Mol Cell Biochem 230, 139–147 (2002). https://doi.org/10.1023/A:1014248208584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014248208584

Navigation