Skip to main content
Log in

Osmotic Forces and Gap Junctions in Spreading Depression: A Computational Model

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In a computational model of spreading depression (SD), ionic movement through a neuronal syncytium of cells connected by gap junctions is described electrodiffusively. Simulations predict that SD will not occur unless cells are allowed to expand in response to osmotic pressure gradients and K+ is allowed to move through gap junctions. SD waves of [K+]out ≈ 25 to ≈60 mM moving at ≈2 to ≈18 mm/min are predicted over the range of parametric values reported in gray matter, with extracellular space decreasing up to ≈50%. Predicted waveform shape is qualitatively similar to laboratory reports. The delayed-rectifier, NMDA, BK, and Na+ currents are predicted to facilitate SD, while SK and A-type K+ currents and glial activity impede SD. These predictions are consonant with recent findings that gap junction poisons block SD and support the theories that cytosolic diffusion via gap junctions and osmotic forces are important mechanisms underlying SD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aitken PG, Borgdorff AJ, Juta AJA, Kiehart DP, Somjen GG, Wadman WJ (1998a) Volume changes induced by osmotic stress in freshly isolated rat hippocampal neurons. Pflugers Arch. 436:991-998.

    Google Scholar 

  • Aitken PG, Tombaugh GC, Turner DA, Somjen GG (1998b) Similar propagation of SD and hypoxic SD-like depolarization in rat hippocampus recorded optically and electrically. J. Neurophysiol. 80:1514-1521.

    Google Scholar 

  • Ashton D, Willems R, Wynants J, Van Reempts J, Marrannes R, Clincke G (1997) Altered Na(+)-channel function as an in vitro model of the ischemic penumbra: Action of lubeluzole and other neuroprotective drugs. Brain Res. 745:210-221.

    Google Scholar 

  • Atri, A (1996) Mathematical modeling and analysis of intracellular calcium dynamics: Oscillations and wave propagation. PhD diss., University of California, Los Angeles.

    Google Scholar 

  • Atri A, Admundson J, Clapham D, Sneyd J (1993) A single-pool model for intracellular calcium oscillations andwaves in the xenopus laevis oocyte. Biophys. J. 65:1727-1739.

    Google Scholar 

  • Avoli M, Nagao T, Kohling R, Lucke A, Mattia D (1996) Synchronization of rat hippocampal neurons in the absence of excitatory amino acid-mediated transmission. Brain Res. 735:188-196.

    Google Scholar 

  • Basarsky TA, Duffy SN, Andrew RD, MacVicar BA (1998) Imaging spreading depression and associated intracellular calcium waves in brain slices. J. Neurosci. 18:7189-7199.

    Google Scholar 

  • Bayer VE, Pickel VM (1990) Ultrastructural localization of tyrosine hydroxylase in the rat ventral tegmental area: Relationship between immunolabeling density and neuronal associations. J. Neurosci. 10:2996-3013.

    Google Scholar 

  • Belluardo N, Trovato-Salinaro A, Mudò G, Hurd YL, Condorelli DF (1999) Structure, chromosomal localization, and brain expression of human C x 36 gene. J. Neurosci. Res. 57:740-752.

    Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315-325.

    Google Scholar 

  • Blatz AL, Magleby KL (1987) Calcium-activated potassium channels. Trends Neurosci. 10:463-467.

    Google Scholar 

  • Bozhilova-Pastirova A, Ovtscharoff W (1995) Structure of the synaptic junctions in the rat sensorimotor cortex: Freeze-etching study of neuronal gap junctions. Neurosci. Lett. 201:265-267.

    Google Scholar 

  • Bures J, Buresova O, Krivanek J (1974) The Mechanism and Applications of Leao's Spreading Depression of Electroencephalographic Activity. Academic Press, New York.

    Google Scholar 

  • Burton FL, Hunter OF (1990) Sensitivity to flow of intrinsic gating in inwardly rectifying potassium channel from mammalian skeletal muscle. J. Physiol. (Lond.) 424:253-261.

    Google Scholar 

  • Christie BR, Eliot LS, Ito K, Miyakawa H, Johnston D (1995) Different Ca++ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca++ influx. J. Neurophysiol. 73:2553-2557.

    Google Scholar 

  • Colbert CM, Johnston D (1996) Axonal action-potential initiation and the Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16:6676-6686.

    Google Scholar 

  • De Schutter E, Bower J (1994) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J. Neurophysiol. 71:375-400.

    Google Scholar 

  • De Schutter E, Smolen P (1998) Calcium dynamics in large neuronal network. In: Koch C, Segev I, eds. Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge, MA. pp. 211-250.

    Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski, TJ (1998) Kinetic models of synaptic transmission. In: C Koch, I Segev, eds. Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge, MA. pp. 1-26.

    Google Scholar 

  • Di Francesco D, Nobel D (1985) A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Trans. Roy. Soc. Lond. B307:353-398.

    Google Scholar 

  • Di Polo R, Beaugé L (1979) Physiological role of ATP-driven calcium pump in squid axon. Nature 278:271-273.

    Google Scholar 

  • Douglas R, Martin K (1998) Neocortex. In: Shepherd GM, ed. The Synaptic Organization of the Brain (4th ed.). Oxford University Press, New York.

    Google Scholar 

  • Fan J, Walsh KB (1999) Mechanical stimulation regulates voltage-gated potassium currents in cardiac microvascular endothelial cells. Circ. Res. 84:451-457.

    Google Scholar 

  • Farley J, Rudy B (1988) Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes. Biophys. J. 53:919-934.

    Google Scholar 

  • Felix JA, Woodruff ML, Dirksen ER (1996) Stretch increases inositol 1,4,5trisphosphate concentration in airway epithelial cells. Am. J. Respir. Cell. Mol. Biol. 14:296-301.

    Google Scholar 

  • Fró es MM, Correia AH, Garcia-Abreu J, Spray DC, Campos de Carvalho AC, Neto MV (1999) Gap-junctional coupling between neurons and astrocytes in primary central nervous system cultures. Proc. Natl. Acad. Sci. USA 96:7541-7546.

    Google Scholar 

  • Garaschuk O, Schneggenburger R, Schirra C, Tempia F, Konnerth A (1996) Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurons. J. Physiol. 491:757-772.

    Google Scholar 

  • Gardner-Medwin AR (1981) Possible roles of vertebrate neuroglia in potassium dynamics, spreading depression and migraine. J. Exp. Biol. 95:111-127.

    Google Scholar 

  • Gillessen T, Alzheimer C (1997) Amplification of EPSPs by low Ni2+-and amiloride-sensitive Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Neurophysiol. 77:1639-1643.

    Google Scholar 

  • Gruol DL, Jacquin T, Yool L (1991) Single channel KC currents recorded from the somatic and dendritic regions of cerebellar Purkinje neurons in culture. J. Neurosci. 11:1002-1015.

    Google Scholar 

  • Hablitz JJ, Heinemann U (1989) Alterations in the microenvironment during spreading depression associated with epileptiform activity in the immature neocortex. Brain Res. Dev. Brain Res. 46:243-252.

    Google Scholar 

  • Hernandez-Caceres J, Macias-Gonzalez R, Brozek G, Bures J (1987) Systemic ketamine blocks cortical spreading depression but does not delay the onset of terminal anoxic depolarization in rats. Brain Res. 437:360-364.

    Google Scholar 

  • Herreras O, Largo C, Ibarz JM, Somjen GG, Martin del Rio R (1994) Role of neuronal synchronizing mechanisms in the propagation of spreading depression in the in vivo hippocampus. J. Neurosci. 14:7087-7098.

    Google Scholar 

  • Herreras O, Somjen GG (1993) Propagation of spreading depression among dendrites and somata of the same cell population. Brain Res. 610:276-282.

    Google Scholar 

  • Hille B (1992) Ionic Channels of Excitable Membranes (2nd ed.). Sinauer, Sunderland, MA.

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117:500-544.

    Google Scholar 

  • Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869-875.

    Google Scholar 

  • Holmes WR (1995) Modeling the effect of glutamate diffusion and uptake on NMDA and non-NMDA receptor saturation. Biophys. J. 69:734-747.

    Google Scholar 

  • Jakobson E (1980) Interactions of cell volume, membrane potential, and membrane transport parameters. Am. J. Physiol. 238:C196-C206.

    Google Scholar 

  • Ji S, John SA, Lu Y, Weiss JN (1998) Mechanosensitivity of the cardiac muscarinic potassium channel:Anovel property conferred by the Kir3.4 subunit. J. Biol. Chem. 273:1324-1328.

    Google Scholar 

  • Jing J, Aitken PG, Somjen GG (1994) Interstitial volume changes during spreading depression in rat hippocampal slices. Brain Res. 604:251-259.

    Google Scholar 

  • Kandler K, Katz LC (1995) Relationship between dye coupling and spontaneous activity in developing ferret visual cortex. Dev. Neurosci. 20:59-64.

    Google Scholar 

  • Kavalali ET, Zhuo M, Bito H, Tsien RW (1997) Dendritic Ca2+ channels characterized by recordings from isolated hippocampal dendritic segments. Neuron 18:651-663.

    Google Scholar 

  • Keener J, Sneyd J (1998) Mathematical Physiology. Springer-Verlag, New York.

    Google Scholar 

  • Koch C (1998) Biophysics of Computation. Oxford University Press, New York.

    Google Scholar 

  • Koroleva VI, Vinogradova LV, Bures J (1993) Reduced incidence of cortical spreading depression in the course of pentylenetetrazol kindling in rats. Brain Res. 608:107-114.

    Google Scholar 

  • Kostyuk PG, Verchratsky (1995) Calcium Signaling in the Nervous System. Wiley, Chichester.

    Google Scholar 

  • Kraig RP, Nicholson C (1978) Extracellular ionic variations during spreading depression. Neuroscience 3:1045-1059.

    Google Scholar 

  • Lal R, Arnsdorf MF (1992) Voltage dependent gating and single channel conductance of adult mammalian atrial gap junctions. Circ. Res. 71:737-743.

    Google Scholar 

  • Largo C, Cuevas P, Somjen G, Martin del Rio R, Herreras O (1996) The effect of depressing glial function in rat brain in situ on ion homeostasis, synaptic transmission, and neuron survival. J. Neurosci. 16:1219-1229.

    Google Scholar 

  • Largo C, Ibarz JM, Herreras O (1997a) Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brain in situ. J. Neurophysiol. 78:295-307.

    Google Scholar 

  • Largo C, Tombaugh GC, Aitken PG, Herreras O, Somjen GG (1997b) Heptanol but not fluoroacetate prevents the propagation of spreading depression in rat hippocampal slices. J. Neurophysiol. 77:9-16.

    Google Scholar 

  • Lauritzen M, Hansen AJ (1992) The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J. Cereb. Blood Flow Metab. 12:223-229.

    Google Scholar 

  • Lauritzen M, Rice ME, Okada Y, Nicholson C (1988) Quisqualate, kainate and NMDA can initiate spreading depression in the turtle cerebellum. Brain Res. 475:317-327.

    Google Scholar 

  • Leão AAP (1944a) Pial circulation and spreading depression of activity in cerebral cortex. J. Neurophysiol. 7:391-396.

    Google Scholar 

  • Leã o AAP (1944b) Spreading depression of activity in the cerebral cortex. Ph.D. diss., Harvard University.

  • Leão AAP (1944c) Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7:359-390.

    Google Scholar 

  • Lemieux DR, Roberge FA, Joly D (1992) Modeling the dynamic features of the electrogenic Na, K pump of cardiac cell. J. Theor. Biol. 154:335-358.

    Google Scholar 

  • Magee JC, Johnston D (1995a) Characterization of single voltage-gated Na+ and Ca++ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. (Lond.) 487:67-90.

    Google Scholar 

  • Magee JC, Johnston D (1995b) Synaptic activation of voltage-gated channels in dendrites of hippocampal pyramidal neurons. Science 268:301-304.

    Google Scholar 

  • Mainen ZF, Sejnowski TJ (1998) Modeling active dendritic processes in pyramidal neurons. In: Koch C, Segev I, eds. Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge, MA. pp. 171-210.

    Google Scholar 

  • Marrannes R, Willems R, De Prins E, Wauquier A (1998) Evidence for a role of the N-methyl-D-aspartate(NMDA) receptor in cortical spreading depression in the rat. Brain Res. 457:226-240.

    Google Scholar 

  • Martins-Ferreira H, Ribeiro LJ (1995) Biphasic effects of gap junctional uncoupling agents on the propagation of retinal spreading depression. Braz. J. Med. Biol. Res. 28:991-994.

    Google Scholar 

  • Mayer ML, Westbrook GL (1987) Permeation and block of n-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurons. J. Physiol. 394:501-527.

    Google Scholar 

  • McCown TJ, Breese GR (1990) Effects of apamin and nicotinic acetylcholine receptor antagonists on inferior collicular seizures. Eur. J. Pharmacol. 187:49-58.

    Google Scholar 

  • McLachlan RS (1992) Suppression of spreading depression of Leao in neocortex by an N-methyl-D-aspartate receptor antagonist. Can. J. Neurol. Sci. 19:487-491.

    Google Scholar 

  • Mienville JM, Barker JL, Lange GD (1996) Mechanosensitive properties of BK channels from embryonic rat neuroepithelium. J. Membrane Biol. 153:211-216.

    Google Scholar 

  • Morton KW, Mayers KF (1994) Numerical Solution of Partial Differential Equations: An Introduction. Cambridge University Press, Cambridge.

    Google Scholar 

  • Müller M, Somjen GG (1998) Inhibition of major cationic inward currents prevents spreading depression-like hypoxic depolarization in rat hippocampal tissue slices. Brain Res. 812:1-13.

    Google Scholar 

  • Nadarajah B, Parnavelas JG (1999) Gap junction-mediated communication in the developing and adult cerebral cortex. Novartis Found. Symp. 219:157-174.

    Google Scholar 

  • Nedergaard M, Cooper AJ, Goldman SA (1995) Gap junctions are required for the propagation of spreading depression. J. Neurobiol. 28:433-444.

    Google Scholar 

  • Nellgard B, Wieloch T (1992) NMDA-receptor blockers but not NBQX, an AMPA-receptor antagonist, inhibit spreading depression in the rat brain. Acta Physiol. Scand. 146:497-503.

    Google Scholar 

  • Nicholson S, Syková E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21:207-215.

    Google Scholar 

  • Noma A, Tsuboi N (1987) Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea pig. J. Physiol. 382:193-211.

    Google Scholar 

  • Peinado A, Yuste R, Katz LC (1993) Gap junctional communication and the development of local circuits in neocortex. Cereb. Cortex 3:488-498.

    Google Scholar 

  • Pleumsamran A, Kim D (1995) Membrane stretch augments the cardiac muscarinic K+ channel activity. J. Membr. Biol. 148:287-297.

    Google Scholar 

  • Psarropoulou C, Avoli M (1993) 4-Aminopyridine-induced spreading depression episodes in immature hippocampus: Developmental and pharmacological characteristics. Neuroscience 55:57-68.

    Google Scholar 

  • Qian N, Sejnowski TJ (1989) An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons. Biol. Cybern. 62:1-15.

    Google Scholar 

  • Reggia JA, Montgomery D (1996) A computational model of visual hallucinations in migraine. Comput. Biol. Med. 26:133-141.

    Google Scholar 

  • Reinhart PH, Chung S, Levitan IB (1989) A family of calcium-dependent potassium channels from rat brain. Neuron 2:1031-1041.

    Google Scholar 

  • Revett K, Ruppin E, Goodall S, Reggia JA (1998) Spreading depression in focal ischemia: A computational study. J. Cereb. Blood Flow Metab. 18:998-1007.

    Google Scholar 

  • Rörig B, Klausa G, Sutor B (1995) Dye coupling between pyramidal neurons in developing rat prefrontal and frontal cortex is reduced by protein kinase A activation and dopamine. J. Neurosci. 15:386-400.

    Google Scholar 

  • Rusakov DA, Kullmann DM (1998) Geometric and viscous components of the tortuosity of the extracellular space in the brain. Proc. Natl. Acad. Sci. USA 95:8975-8980.

    Google Scholar 

  • Sah P (1996) Ca2+-activated K+ currents in neurones: Types, physiological roles and modulation. TINS 19:150-154.

    Google Scholar 

  • Sasaki N, Mitsuiye T, Noma A (1992) Effects of mechanical stretch on membrane currents of single ventricular myocytes of guinea pig hearts. Jap. J. of Physiol. 42:957-970.

    Google Scholar 

  • Scheller D, Tegtmeier F, Schlue WR (1998) Dose-dependent effects of tetraethylammonium on circling spreading depressions in chicken retina. J. Neurosci. Res. 51:85-89.

    Google Scholar 

  • Schneggenburger R (1996) Simultaneous measurement of Ca++ in-flux and reversal potentials in recombinant n-methyl-d-aspartate receptor channels. Biophys. J. 70:2165-2174.

    Google Scholar 

  • Shapiro BE (2000) An electrophysiological model of gap-junction mediated cortical spreading depression including osmotic volume changes. Ph.D. diss., University of California, Los Angeles.

    Google Scholar 

  • Simbürger E, Stang A, Kremer M, Dermietzel R (1997) Expression of connexin43 mRNA in adult rodent brain. Histochem. Cell. Biol. 107:127-137.

    Google Scholar 

  • Sloper JJ, Powell TP (1978) Gap junctions between dendrites and somata of neurons in the primate sensori-motor cortex. Proc. R. Soc. Lond. B. Biol. Sci. 203:39-47.

    Google Scholar 

  • Somjen GG, Aitken PG, Czeh GL, Herreras O, Jing J, Young JN (1992) Mechanism of spreading depression: A review of recent findings and a hypothesis. Can. J. Physiol. Pharmacol. 70:S248-S254.

    Google Scholar 

  • Stuart G, Sakmann, B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69-72.

    Google Scholar 

  • Tas, PWI, Massa PT, Koschel K (1986) Preliminary characterization of an Na+, K+, Cl-co-transport activity in cultured human astrocytes. Neurosci. Lett. 70:369-377.

    Google Scholar 

  • Tas PWI, Massa PT, Kress HG, Koschel K (1987) Characterization of a Na+, K+, Cl-contransport in primary cultures of rat astrocytes. Biochim. Biophys. Acta 903:411-416.

    Google Scholar 

  • Traub RD, Jefferys JGR, Miles R, Whittington M, Toth K (1994) A branching dendritic model of a rodent CA3 pyramidal neurone. J. Physiol. (Lond.) 481:79-95.

    Google Scholar 

  • Tuckwell HC (1980) Predictions and properties of a model of potassium and calcium ion movements during spreading depression. Intern. J. Neurosci. 10:145-164.

    Google Scholar 

  • Tuckwell HC (1981) Simplified reaction-diffusion equations for potassium and calcium ion concentrations during spreading cortical depression. Intern. J. Neurosci. 12:95-107.

    Google Scholar 

  • Tuckwell HC, Hermansen CL (1981) Ion and transmitter movements during spreading cortical depression. Intern. J. Neurosci. 12:109-135.

    Google Scholar 

  • Tuckwell HC, Miura RM (1978) A mathematical model for spreading depression. Biophys. J. 23:257-276.

    Google Scholar 

  • Tuttle R, Masuko S, Nakajima Y (1986) Freeze-fracture study of the large myelinated club ending synapse on the goldfish Mauthner cell: Special reference to the quantitative analysis of gap junctions. J. Comp. Neurol. 246:202-211.

    Google Scholar 

  • van der Want JJL, Gramsbergen A, Ijkema-Paassen J, de Weerd H, Liem RSB (1998) Dendro-dendritic connections between motoneurons in the rat spinal cord: An electron microscopic investigation. Brain Res. 779:342-345.

    Google Scholar 

  • Van Harreveld A (1984) The nature of the chick's magnesium-sensitive retinal spreading depression. J. Neurobiol. 15:333-343.

    Google Scholar 

  • Vergara C, Latorre R, Marrion NV, Adelman JP (1998) Calcium-activated potassium channels. Curr. Opin. Neurobiol. 8:321-329.

    Google Scholar 

  • Vogel R, Weingart R (1998) Mathematical model of vertebrate gap junctions derived from electrical measurements on homotypic and heterotypic channels. J. Physiol. 510:177-189.

    Google Scholar 

  • Yamada WM, Koch C, Adams PR (1998) Multiple channels and calcium dynamics. In: Koch C, Segev I, eds. Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge, MA. pp. 137-170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapiro, B.E. Osmotic Forces and Gap Junctions in Spreading Depression: A Computational Model. J Comput Neurosci 10, 99–120 (2001). https://doi.org/10.1023/A:1008924227961

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008924227961

Navigation