Skip to main content
Log in

Simulation of Gamma Rhythms in Networks of Interneurons and Pyramidal Cells

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Networks of hippocampal interneurons, with pyramidal neuronspharmacologically disconnected, can generate gamma-frequency(20 Hz and above) oscillations. Experiments and models have shownhow the network frequency depends on excitation of the interneurons,and on the parameters of GABA{\rm A}-mediated IPSCs betweenthe interneurons (conductance and time course). Herewe use network simulations to investigate how pyramidal cells, connected tothe interneurons and to each other throughAMPA-type and/or NMDA-type glutamatereceptors, might modify the interneuron network oscillation. With orwithout AMPA-receptor mediated excitation of the interneurons, the pyramidal cells and interneurons fired in phaseduring the gamma oscillation. Synaptic excitation of the interneuronsby pyramidal cellscaused them to fire spike doublets or short bursts at gammafrequencies, thereby slowing the population rhythm.Rhythmic synchronized IPSPs allowed the pyramidal cells toencode their mean excitation by their phase of firing relativeto the population waves.Recurrent excitation between the pyramidal cells couldmodify the phase of firing relative to the population waves.Our model suggests that pools of synaptically interconnectedinhibitory cells are sufficient to produce gamma frequency rhythms,but the network behavior can be modified by participation ofpyramidal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bianchi R, Wong RKS (1995) Excitatory synaptic potentials dependent on metabotropic glutamate receptor activation in guinea-pig hippocampal pyramidal cells. J. Physiol. 487:663–676.

    Google Scholar 

  • Bragin A, Jandó G, Nádasdy Z, Hetke J, Wise K, Buzsáki G (1995) Gamma (40–100 Hz) Oscillation in the hippocampus of the behaving rat. J. Neurosci. 15:47–60.

    Google Scholar 

  • Buhl EH, Tamas G, Somogyi P (1995) Recurrent unitary EPSPs evoked in anatomically identified inhibitory interneurones of the cat visual cortex in vitro. J. Physiol. 487:51P–52P.

    Google Scholar 

  • Dietz S, Frotscher M, Abt K (1987) Quantitative untersuchungen zur schichtenspezifischen verteilung von neuronen im hippocampus des meerschweinchens. Verh. Anat. Ges.81:883–884.

    Google Scholar 

  • Domann R, Uhlig S, Dorn T, Witte OW (1991) Participation of interneurons in penicillin-induced epileptic discharges. Exp. Brain Res. 83:683–686.

    Google Scholar 

  • Engel AK, König P, Kreiter AK, Schillen TB, Singer W(1992) Temporal coding in the visual cortex: New vistas on integration in the nervous system. Trends Neurosci. 15:218–226.

    Google Scholar 

  • Freeman WJ (1972) Measurement of oscillatory responses to electrical stimulation in olfactory bulb of cat. J. Neurophysiol. 35:762–779.

    Google Scholar 

  • Gray CM (1994) Synchronous oscillations in neuronal systems: Mechanisms and functions. J. Comput. Neurosci. 1:11–38.

    Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA86:1698–1702.

    Google Scholar 

  • Gulyás AI, Miles R, Hájos N, Freund TF (1993a) Precision and variability in postsynaptic target selection of inhibitory cells in the hippocampal CA3 region. Eur. J. Neurosci. 5:1729–1751.

    Google Scholar 

  • Gulyás AI, Miles R, Sik A, Tóth K, Tamamaki N, Freund TF (1993b) Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature366:683–687.

    Google Scholar 

  • Hopfield JJ (1995) Pattern recognition computation using action potential timing for stimulus representation. Nature376:33–36.

    Google Scholar 

  • Jahr CE, Stevens CF (1990) Voltage dependence ofNMDA-activated macroscopic conductances predicted by single-channel kinetics. J. Neurosci. 10:3178–3182.

    Google Scholar 

  • Joliot M, Ribary U, Llinás R (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc. Natl. Acad. Sci. USA91:11748–11751.

    Google Scholar 

  • Knowles WD, Schwartzkroin PA (1981) Local circuit synaptic interactions in hippocampal brain slices. J. Neurosci. 1:318–322.

    Google Scholar 

  • Leung LS (1987) Hippocampal electrical activity following local tetanization. I. Afterdischarges. Brain Res. 419:173–187.

    Google Scholar 

  • Llinás RR, Grace AA, Yarom Y (1991) In vitroneurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10-to 50-Hz range. Proc. Natl. Acad. Sci. USA88:897–901.

    Google Scholar 

  • McBain CJ, DiChiara TJ, Kauer JA (1994) Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission. J. Neurosci. 14:4433–4445.

    Google Scholar 

  • Miles R (1990) Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro. J. Physiol. 428:61–77.

    Google Scholar 

  • Miles R, Wong RKS (1986) Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. J. Physiol. 373:397–418.

    Google Scholar 

  • Nuñez A, Amzica F, Steriade M (1992) Voltage-dependent fast (20–40 Hz) oscillations in long-axoned neocortical neurons. Neuroscience 51:7–10.

    Google Scholar 

  • O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus3:317–330.

    Google Scholar 

  • Otis TS, Mody I (1992) Modulation of decay kinetics and frequency of GABAAreceptor-mediated spontaneous inhibitory postsynaptic currents in hippocampal neurons. Neuroscience49:13–32.

    Google Scholar 

  • Perouansky M, Yaari Y(1993) Kinetic properties ofNMDAreceptormediated synaptic currents in rat hippocampal pyramidal cells versusinterneurones. J. Physiol. 465:223–244.

    Google Scholar 

  • Sik A, Penttonen M, Ylinen A, Buzáki G (1995) Hippocampal CA1 interneurons: An in vivointracellular labeling study. J. Neurosci. 15:6651–6665.

    Google Scholar 

  • Sik A, Tamamaki N, Freund TF (1993) Complete axon arborization of a single CA3 pyramidal cell in the rat hippocampus, and its relationship with postsynaptic parvalbumin-containing interneurons. Eur. J. Neurosci. 5:1719–1728.

    Google Scholar 

  • Stasheff SF, Hines M, Wilson WA (1993) Axon terminal hyperexcitability associated with epileptogenesis in vitro. I. Origin of ectopic spikes. J. Neurophysiol. 70:960–975.

    Google Scholar 

  • Steriade M, Curró Dossi R, Paré D, Oakson G (1991) Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc. Natl. Acad. Sci. USA88:4396–4400.

    Google Scholar 

  • Tamas G, Buhl EH, Somogyi P (1995) High degree of selfinnervation by GABAergic basket cells in the visual cortex of the cat as revealed in vitro. J. Physiol. 487.P:63P–64P.

    Google Scholar 

  • Traub RD, Colling SB, Jefferys JGR (1995) Cellular mechanisms of 4-aminopyridine-induced synchronized after-discharges in the rat hippocampal slice. J. Physiol. 489:127–140.

    Google Scholar 

  • Traub RD, Jefferys JGR, Miles R, Whittington MA, Tóth K (1994a) A branching dendritic model of a rodent CA3 pyramidal neurone J. Physiol. 481:79–95.

    Google Scholar 

  • Traub RD, Jefferys JGR, Whittington MA (1994b) Enhanced NMDA conductances can account for epileptiform activities induced by low Mg2+ in the rat hippocampal slice. J. Physiol. 478:379–393.

    Google Scholar 

  • Traub RD, Miles R (1991) Neuronal Networks of the Hippocampus. Cambridge University Press, New York.

    Google Scholar 

  • Traub RD, Miles R (1995) Pyramidal cell-to-inhibitory cell spike transduction explicable by active dendritic conductances in inhibitory cell. J. Comput. Neurosci. 2:291–298.

    Google Scholar 

  • Traub RD, Miles R, Jefferys JGR (1993) Synaptic and intrinsic conductances shape picrotoxin-induced synchronized afterdischarges in the guinea-pig hippocampal slice. J. Physiol. 461:525–547.

    Google Scholar 

  • Traub RD, Whittington MA, Colling SB, Buzsáki G, Jefferys JGR (1996a) Analysis of gamma rhythms in the rat hippocampus in vitroand in vivo. J. Physiol. 493:471–484.

    Google Scholar 

  • Traub RD, Whittington MA, Stanford IM, Jefferys JGR (1996b) A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature383:621–624.

    Google Scholar 

  • Traub RD, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66:635–650.

    Google Scholar 

  • Van der Loos H, Glaser EM (1972) Autapses in neocortex cerebri: Synapses between a pyramidal cell’s axon and its own dendrites. Brain Res. 48:355–360.

    Google Scholar 

  • Wang X-J, Rinzel J (1993) Spindle rhythmicity in the reticularis thalami nucleus: Synchronization among mutually inhibitory neurons. Neuroscience53:899–904.

    Google Scholar 

  • Whittington MA, Traub RD, Jefferys JGR (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature373:612–615.

    Google Scholar 

  • Wilson M, Bower JM (1992) Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. J. Neurophysiol. 67:981–995.

    Google Scholar 

  • Wong RKS, Prince DA (1981) Afterpotential generation in hippocampal pyramidal cells. J. Neurophysiol. 45:86–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traub, R.D., Jefferys, J.G. & Whittington, M.A. Simulation of Gamma Rhythms in Networks of Interneurons and Pyramidal Cells. J Comput Neurosci 4, 141–150 (1997). https://doi.org/10.1023/A:1008839312043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008839312043

Navigation