Skip to main content
Log in

Current Source Density Analysis of CNV During Temporal Gap Paradigm

  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The present report studied the contingent negative variation during Gap and Non-Gap conditions using visual stimulation and manual responses. The reaction times during the Gap condition were facilitated compared with those of the Non-Gap condition. The contingent negative variation component was obtained during the preparatory period from electrodes placed at 58 scalp sites for both Gap and Non-Gap conditions. The comparison between both conditions: Gap and non-gap did not show statistically significant differences during the preparatory period. The topography of the voltage and current source density maps showed three different foci: (i) an early negativity centred in electrodes overlying the supplementary motor area and cingulate motor areas, (ii) an activation over the primary motor cortex contralateral to the finger movement, and (iii) a bilateral activation on posterior sites. All these results suggest that the facilitation induced by the warning stimuli occurs in neural circuits that would be recruited for the subsequent processing of the imperative stimulus. The facilitation of the reaction times during the gap condition with respect to non-gap condition must be justified by neural events occurring during the gap period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barceló, F., Suwazono, S. and Knight, R.T. Prefrontal modulation of visual processing in humans. Nature Neuroscience, 2000, 3(4): 399-403.

    Google Scholar 

  • Bekkering, H., Pratt, J. and Abrams, R. The Gap effect for eye and hand movements. Perception and Psychophysics, 1996, 58: 628-635.

    Google Scholar 

  • Birbaumer, N., Elbert, T., Canavan, A. and Rockstroh, B. Slow potentials of the cerebral cortex and behavior. Psychol. Rev. 1990, 70: 1-41.

    Google Scholar 

  • Böcker, K.B.E., Brunia, C.H.M. and van den Berg-Lenssen, M.M.C. A spatiotemporal dipole model of the Stimulus Preceding Negativity (SPN) prior to feedback stimuli. Brain Topography, 1994, 7: 71-88.

    Google Scholar 

  • Brunia, C.H.M. and Damen, E.J.P. Distribution of slow potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroenceph.lectroenceph. Clin. Neurophysiol., 1988, 69: 234-243.

    Google Scholar 

  • Cui, R. and Deecke, L. High resolution DC-EEG analysis of the Bereitschaftspotential and post movement onset potentials accompanying Uni-or Bilateral voluntary finger movements. Brain Topography, 1999, 11(3): 233-249.

    Google Scholar 

  • Damen, E.J.P. and Brunia, C.H.M. Changes in heart rate and slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Psychophysiology, 1987a, 24: 700-713.

    Google Scholar 

  • Damen, E.J.P. and Brunia, C.H.M. Precentral potential shifts related to motor preparation and stimulus anticipation: a replication. In: R. Johnson Jr., J.W. Rohrbaugh and R. Parasumaran (Eds.), Current Trends in Event-Related Potentials Research. EEG and Clinical Neurophysiology. Suppl 40, Elsevier, Amsterdam, 1987b: 13-16.

    Google Scholar 

  • Fischer, B. and Breitmeyer, B. Mechanisms of visual attention revealed by saccadic eye movements. Neuropsychologia, 1987, 25: 73-83.

    Google Scholar 

  • Fischer, B. and Weber, H. Express saccades and visual attention. Behavioral and Brain Sciences, 1993, 16: 553-610.

    Google Scholar 

  • Gómez, C., Atienza, M., Vázquez, M. and Cantero, J.L. Saccadic reaction times to fully predictive and random visual targets during Gap and Non-Gap paradigms. In J.M. Delgado-García, E. Godaux and P.P. Vidal (Eds.), Information processing underlying gaze control. Oxford: Pergamon, 1994a: 109-115.

    Google Scholar 

  • Gómez, C., Clark, P., Fan, S., Luck, S.J. and Hillyard, S.A. Sources of attention-sensitive visual event-related potentials. Brain Topography, 1994b, 7(1): 41-51.

    Google Scholar 

  • Gómez, C., Atienza, M., López-Mendoza, D., Gómez, G.J. and Vázquez, M. Cortical potentials during Gap and Non-Gap paradigms using manual responses in humans. Neuroscience Letters, 1995, 186: 107-110.

    Google Scholar 

  • Gómez, C., Millán, S., Atienza, M., Aguilar-Bravo, H., Vázquez, M. and Delinte, A. The Gap effect during visual and auditory stimulation using manual responses. Biological Psychology, 1998, 47: 77-96.

    Google Scholar 

  • Grünewald, G., Grünewald-Zuberbier, E., Hömberg, V. and Schuhmacher, H. Hemispheric asymmetry of feedback-related slow negative potential shifts in a positioning movement task. In: R. Karrer and P. Tueting (Eds.), Brain and Information: Event-Related Potentials. New York Academy of Sciences. New York. 1984: 470-476.

    Google Scholar 

  • Halsband, U., Ito, N., Tanji, J. and Freund, H.J. The role of the premotor cortex and the supplementary motor area in the temporal control of movement in main. Brain, 1993, 116: 243-246.

    Google Scholar 

  • Hillyard, S.A and Anllo-Vento, L. Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Science, 1998, 95: 781-787.

    Google Scholar 

  • Hjörth, B. An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroenceph. Clin. Neurophysiol., 1975, 39: 526-530.

    Google Scholar 

  • Homan, R.W., Herman, J. and Purdy, P. Cerebral location of International 10-20 system electrode placement. Electroenceph. Clinical Neurophysiology, 1987, 66: 376-382.

    Google Scholar 

  • Iwasaki, S. (1990). Facilitation of reaction times with Gap paradigm: Comparison of manual and saccadic responses. Ergonomics, 1990, 33(6): 833-850.

    Google Scholar 

  • Kingstone, A. and Klein, R.M. What are human express saccades? Perception and Psychophysics, 1993, 54: 260-273.

    Google Scholar 

  • Knight, R.T., Staines, W.R., Swick, D. and Chao, L.L. Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychol. (Amst), 1999, 101(2-3): 159-178.

    Google Scholar 

  • Kornhuber, H.H. and Deecke, L. Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Archives, 1965, 284: 1-17.

    Google Scholar 

  • Loveless, N.E. and Sanford, A.J. Slow potentials correlates of preparatory set. Biological Psychology, 1974,1: 303-314.

    Google Scholar 

  • Luck, S.J., Chelazzi, L., Hillyard, S.A. And Desimone, R. Neural mechanisms of spatial selective attention in areas V1,V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 1997, 77(1): 24-42.

    Google Scholar 

  • Macar, F., Vidal, F. and Casini, L. The supplementary motor area in motor and sensorial timing: evidence from slow brain potential changes. Exp. Brain Research, 1999, 125:271-280.

    Google Scholar 

  • Müller, M.M., Teder-Sälejärvi, W. and Hillyard S.A. The time course of cortical facilitation during cued shifts of spatial attention. Nature Neuroscience, 1998, 1(7).

  • Nieuwenhuys, R., Voogd, J. and Van Huijzen, C.H.R. The human central nervous system. A synopsis and atlas. Third edition, Berlin Heidelberg: Springer-Verlag, 1988.

    Google Scholar 

  • Nunez, P.L. Electric fields of the Brain. The neurophysics of EEG. Oxford New York: Oxford University Press, 1981.

    Google Scholar 

  • Pernier, J., Perrin, F. and Bertrand, O. Scalp current density fields: concepts and properties. Electroencephalogr. Clin. Neurophysiol., 1988, 69: 385-389.

    Google Scholar 

  • Perrin, F., Bertrand, O. and Pernier, J. Scalp current density mapping: value and estimation from potential data. IEEE Trans Biomed. Eng., 1987, 34: 283-288.

    Google Scholar 

  • Reuter-Lorenz, P.A., Hughes, H.C. and Fendrich, R. The reduction of saccadic latency by prior offset of the fixation point: An analysis of the Gap effect. Perception and Psychophysics, 1991, 49: 167-175.

    Google Scholar 

  • Rockstroh, B., Elbert, T., Birbaumer, N. and Lutzenberger, W. Slow brain potentials and behavior. Urban and Schwarzenberg, Baltimore-Munich, 1982.

    Google Scholar 

  • Rockstroh, B., Müller, M., Wagner, M., Cohen, R. and Elbert, T. Probing the nature of the CNV. Electroencephalogr. Clin. Neurophysiol., 1993, 87: 235-241.

    Google Scholar 

  • Rosenthal, R. and Rosnow, R.L.L. Contrast analysis: Focused comparisons in the analysis of variance. Cambridge University Press, 1985.

  • Ross, S.M. and Ross, L.E. Saccade latency and warning signals: Effects of auditory and visual stimulus onset and offset. Perception and Psychophysics, 1981, 29: 429-437.

    Google Scholar 

  • Steinmetz, H., Fürst, G. and Meyer, B.H. Craniocerebral topography within the international 10-20 system. Electroenceph. Clin. Neurophysiol, 1989, 72: 499-506.

    Google Scholar 

  • Stuss, D.T. and Picton, T.W. (1978). Neurophysiological correlates of human concept formation. Behavioral Biology, 1978, 23: 153-162.

    Google Scholar 

  • Tam, W.A. and Stelmach, L.B. Viewing behavior: Ocular and attentional disengagement. Perception and Psychophysics, 1993, 54: 211-222.

    Google Scholar 

  • Towle, V.L., Bolaños, J., Suarez, D., Tan, K., Grzeszczuk, R., Levin, D.N., Cakmur, R., Frank, S.A. and Spire, J.P. The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroenceph. and Clinical Neurophysiology, 1993, 86:1-6.

    Google Scholar 

  • Vidal, F., Bonnet, M. and Macar, F. Programming the duration of a motor sequence: role of the primary and supplementary motor areas in man. Exp. Brain Research, 1995, 106: 339-350.

    Google Scholar 

  • Walter, W.G. The contingent negative variation. An electrical sign of significance of association in the human brain. Science, 1964, 146: 434.

    Google Scholar 

  • Weerts, T.C. and Lang, P.I. The effects of eye fixation and stimulus and response location in the contingent negative variation (CNV). Biologal Psychology, 1973,1: 1-19.

    Google Scholar 

  • Worden, M.S., Foxe, J.J., Wang N. and Simpson G. Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha.band electroencephalography increases over occipital cortex. Journal of Neuroscience, 2000, 20(:RC63): 1-6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, C., Delinte, A., Vaquero, E. et al. Current Source Density Analysis of CNV During Temporal Gap Paradigm. Brain Topogr 13, 149–159 (2001). https://doi.org/10.1023/A:1007816201345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007816201345

Navigation