Neuron
Volume 78, Issue 5, 5 June 2013, Pages 785-798
Journal home page for Neuron

NeuroResource
Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells

https://doi.org/10.1016/j.neuron.2013.05.029Get rights and content
Under an Elsevier user license
open archive

Highlights

  • Neurogenin-2 overexpression rapidly transforms ESCs and iPSCs into neurons

  • Neurogenin-2-induced human neurons form spontaneous excitatory synaptic networks

  • Synapses formed by neurogenin-2-induced human neurons exhibit short-term plasticity

  • After transplantation, neurogenin-2-induced human neurons are synaptically integrated

Summary

Available methods for differentiating human embryonic stem cells (ESCs) and induced pluripotent cells (iPSCs) into neurons are often cumbersome, slow, and variable. Alternatively, human fibroblasts can be directly converted into induced neuronal (iN) cells. However, with present techniques conversion is inefficient, synapse formation is limited, and only small amounts of neurons can be generated. Here, we show that human ESCs and iPSCs can be converted into functional iN cells with nearly 100% yield and purity in less than 2 weeks by forced expression of a single transcription factor. The resulting ES-iN or iPS-iN cells exhibit quantitatively reproducible properties independent of the cell line of origin, form mature pre- and postsynaptic specializations, and integrate into existing synaptic networks when transplanted into mouse brain. As illustrated by selected examples, our approach enables large-scale studies of human neurons for questions such as analyses of human diseases, examination of human-specific genes, and drug screening.

Cited by (0)

6

These authors contributed equally to this work