Neuron
Volume 61, Issue 3, 12 February 2009, Pages 412-424
Journal home page for Neuron

Article
Snapin Facilitates the Synchronization of Synaptic Vesicle Fusion

https://doi.org/10.1016/j.neuron.2008.12.029Get rights and content
Under an Elsevier user license
open archive

Summary

Synaptic vesicle (SV) fusion is a fine-tuned process requiring a concert of fusion machineries. Using cortical neurons from snapin-deficient mice, we reveal a role for Snapin in facilitating synchronous release. In addition to reduced frequency of miniature excitatory postsynaptic currents (mini-EPSCs) and smaller release-ready vesicle pool (RRP) size, snapin deficiency results in EPSCs with multiple peaks and increased rise and decay times, reflecting “desynchronized” SV fusion. These defects impair both synaptic precision and efficacy during sustained neurotransmission. Transient expression of Snapin not only rescues the slowed kinetics of EPSCs, but also further accelerates the rate found in wild-type neurons. Furthermore, expression of Snapin-C66A, a dimerization-defective mutant with impaired interactions with SNAP-25 and Synaptotagmin, reduces the RRP size but exhibits less effect on synchronized fusion. Our studies provide mechanistic insights into a dual role of Snapin in enhancing the efficacy of SV priming and in fine-tuning synchronous SV fusion.

MOLNEURO
CELLBIO

Cited by (0)