Cell Reports
Volume 27, Issue 13, 25 June 2019, Pages 3844-3859.e6
Journal home page for Cell Reports

Article
Microglia Are Indispensable for Synaptic Plasticity in the Spinal Dorsal Horn and Chronic Pain

https://doi.org/10.1016/j.celrep.2019.05.087Get rights and content
Under a Creative Commons license
open access

Highlights

  • HFS triggers synaptic plasticity of CGRP afferents and chronic pain

  • LTP-inducible HFS activates spinal microglia through CSF1 signaling

  • Microglial BDNF is essential for HFS-induced spinal LTP and chronic pain

Summary

Spinal long-term potentiation (LTP) at C-fiber synapses is hypothesized to underlie chronic pain. However, a causal link between spinal LTP and chronic pain is still lacking. Here, we report that high-frequency stimulation (HFS; 100 Hz, 10 V) of the mouse sciatic nerve reliably induces spinal LTP without causing nerve injury. LTP-inducible stimulation triggers chronic pain lasting for more than 35 days and increases the number of calcitonin gene-related peptide (CGRP) terminals in the spinal dorsal horn. The behavioral and morphological changes can be prevented by blocking NMDA receptors, ablating spinal microglia, or conditionally deleting microglial brain-derived neurotrophic factor (BDNF). HFS-induced spinal LTP, microglial activation, and upregulation of BDNF are inhibited by antibodies against colony-stimulating factor 1 (CSF-1). Together, our results show that microglial CSF1 and BDNF signaling are indispensable for spinal LTP and chronic pain. The microglia-dependent transition of synaptic potentiation to structural alterations in pain pathways may underlie pain chronicity.

Keywords

long-term potentiation
chronic pain
calcitonin gene-related peptide
microglia
high-frequency stimulation
colony-stimulating factor 1
brain-derived neurotrophic factor

Cited by (0)

11

These authors contributed equally

12

Lead Contact