Theta rhythm during REM sleep and waking: Correlations between power, phase and frequencyRhythme thêta au cours du sommeil REM et de l'éveil: corrélations entre puissance, phase et fréquence

https://doi.org/10.1016/0013-4694(84)90045-2Get rights and content

Abstract

  • 1.

    (1) Short segments of hippocampal EEG in the rat were recorded during rapid-eye-movement sleep (REM) and active waking behaviors. Fourier analysis was used to reveal the time-varying changes of theta power, frequency, coherence and phase in stratum radiatum (apical dendritic layer) of CA1 region.

  • 2.

    (2) In all cases studied during REM sleep or active waking, a significant, positive correlation of radiatum theta phase and peak theta frequency was found. The radiatum phase was found to range from 100 to 170° and increased towards 180° at high (7.8–8.6 c/sec) theta frequency. Electrodes at sites other than stratum radiatum did not show this phase-frequency relation.

  • 3.

    (3) By selectively averaging across spectra of EEG with the same selected peak theta frequency, it was found that the power at the first or second theta harmonic, the integrated power of fast EEG (30–100 c/sec) and the radiatum theta phase all generally increased with increasing theta frequency.

  • 4.

    (4) The results indicate that the radiatum theta phase (and frequency) is dynamically varying during normal behaviors. Together with previous findings on the pharmacology of theta phase, the results suggest that both atropine-sensitive and atropine-resistant inputs are present during normal behaviors.

Résumé

  • 1.

    (1) De courtes portions d'EEG hippocampique ont été enregistrées chez le rat au cours du sommeil REM et de comportements éveillés actifs. L'analyse de Fourier a été utilisée pour révéler des modifications temporelles du thêta, en puissance, fréquence, cohérence et phase dans le stratum radiatum (couche dendritique apicale) de la région CA1.

  • 2.

    (2) Dans tous les cas étudiés au cours du sommeil REM ou en phase d'éveil active, une corrélation positive significative a été trouvée entre la phase du thêta du radiatum et le pic de fréquence thêta. La phase du radiatum était comprise entre 100° et 170° et augmentait jusqu'à 180° pour de hautes (7,8 à 8,6 c/sec) fréquences du thêta. Des électrodes situées hors du stratum radiatum n'ont pas montré cette relation phase-fréquence.

  • 3.

    (3) En moyennant sélectivement les spectres EEG, avec le même pic de fréquence thêta, il a été généralement observé une augmentation, tout à la fois, de la puissance du premier ou du second harmonique thêta, de la puissance intégrée de l'EEG rapide (30 à 100 c/sec) et de la phase du thêta, lorsque la fréquence du thêta augmentait.

  • 4.

    (4) Les résultats montrent que la phase du thêta du radiatum (et sa fréquence) varient de façon dynamique pendant des comportements normaux. Rapprochés de données pharmacologiques précédemment obtenues sur la phase thêta, ces résultats suggèrent que les afférences sensibles à l'atropine et résistantes à l'atropine sont toutes deux présentes au cours de comportements normaux.

References (11)

There are more references available in the full text version of this article.

Cited by (58)

  • Theta dominates cross-frequency coupling in hippocampal-medial entorhinal circuit during awake-behavior in rats

    2022, iScience
    Citation Excerpt :

    Electrode position along the CA1-dentate axis was determined initially via visual inspection of the LFP, followed by traditional current source density analyses (Bragin et al., 1995; Buzsaki et al., 1986; Mitzdorf, 1985; Rappelsberger et al., 1981). Shifts in the phase of theta from stratum oriens to the dentate (Buzsaki et al., 1983; Leung, 1984; Winson, 1978) as well as the regional distribution of currents (triggered on ripples) revealed sources and sinks that are directly related to input layers (Figure 2; Sullivan et al., 2011; Ylinen et al., 1995). Electrode position in MEC region was first checked by histological sagittal sections (Figure S2), followed by comparing theta phase and coherence profile Figure 3 (Chrobak and Buzsaki, 1998; Mitchell and Ranck, 1980; Quilichini et al., 2010), as well as the theta triggered CSD with literature (Figure S2; (Fernández-Ruiz et al., 2021)).

  • Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations

    2022, Neuroscience
    Citation Excerpt :

    Slow Waves: Theta and Alpha Oscillations. Theta oscillations are large amplitude oscillations observed in the ∼4–10 Hz frequency band of the LFPs in several limbic regions of the brain including the hippocampus and entorhinal cortex during awake active exploration, spatial navigation, and rapid eye movement (REM) sleep (Buzsaki et al., 1983; Leung, 1984; Buzsaki, 2002; Buzsaki and Draguhn, 2004; Colgin, 2013, 2016). While they have been well documented in rodent models, thanks to the development of virtual reality and depth stereoelectrode recording tools, theta oscillations have now also been recorded and studied in human and non-human primates (Ekstrom et al., 2005; Watrous et al., 2011; Jutras et al., 2013; Watrous et al., 2013; Bohbot et al., 2017; Goyal et al., 2020) and have been reported to code spatial distance in the absence of sensory cues (Vass et al., 2016).

  • Effects of locus coeruleus activation and inactivation on hippocampal formation theta rhythm in anesthetized rats

    2020, Brain Research Bulletin
    Citation Excerpt :

    In the present study an LC injection of the local anesthetic procaine, reversibly abolished type 2 theta rhythm in anesthetized rats. As noted earlier, this type of theta rhythm differs in many respects from type 1 theta: it has a different pharmacological profile, different behavioral correlates and frequency range (Vanderwolf, 1969; Leung, 1984; Bland, 1986; Sainsbury and Partlo, 1993; Buzsáki, 2002; Vertes, 2005). In contrast to type 1 theta rhythm, type 2 theta can also be produced in vitro with the use of hippocampal slice preparation perfused with the cholinergic agonist carbachol (Konopacki, 1998).

  • Hippocampal strata theta oscillations change their frequency and coupling during spatial learning

    2016, Neuroscience
    Citation Excerpt :

    The theta rhythm is a predominant pattern in hippocampal circuits during REM sleep and during active behaviors that involve external-world information processing, such as walking, running, jumping, swimming, rearing, head moving, sniffing, and whisking (Vanderwolf, 1969; Winson, 1978; Leung, 1984; Vinogradova, 1995); during periods of immobility with highly aroused states due to a previously conditioned stimuli (Vanderwolf, 1969; Whishaw, 1972; Bland, 1986) or the presence of a predator (Sainsbury et al., 1987); and during time discrimination periods (Nakazono et al., 2015).

  • 7,8-Dihydroxyflavone reduces sleep during dark phase and suppresses orexin A but not orexin B in mice

    2015, Journal of Psychiatric Research
    Citation Excerpt :

    Delta wave activity is a major component in deep NREM sleep and the amount of Delta wave activity represents overall sleep quality (Feinberg et al., 1987; Gath and Bar-On, 1983; Ktonas and Gosalia, 1981). Theta activity occurs mostly during REM sleep and during wakefulness as well (Gaztelu et al., 1994; Leung, 1984), and is associated with learning and memory consolidation (Grunwald et al., 1999; Klimesch et al., 1997; Reiner et al., 2014; Zakrzewska and Brzezicka, 2014). While Alpha activity is associated with quiet wake (Honda et al., 1997; Wright et al., 1995), Beta and Gamma activity are primarily associated with attention or other cognitive activities (Gross and Gotman, 1999; Ishii et al., 2014; Moratti et al., 2014; Suazo et al., 2014).

  • Rhythmic Modulation of Theta Oscillations Supports Encoding of Spatial and Behavioral Information in the Rat Hippocampus

    2012, Neuron
    Citation Excerpt :

    Therefore, although the periods and frequencies of TPSM and hippocampal delta oscillations did not match in our recordings, the possibility remains that theta power might be modulated by an underlying slow wave. Second, previous studies reported two types of theta oscillations in the hippocampus, an atropine-resistant and urethane-sensitive type 1 theta related to voluntary movement and an atropine-sensitive, urethane-resistant type 2 theta possibly related to hippocampal-dependent sensory integration (Bland and Oddie, 2001; Kramis et al., 1975; Lee et al., 1994; Leung, 1984a, 1984b; Robinson et al., 1977; Sainsbury et al., 1987a, 1987b; Sutherland et al., 1982; Vanderwolf, 1969; Whishaw and Dyck, 1984). Because type 2 theta has a slightly slower frequency than type 1 theta (4–9 Hz against 6–12 Hz) (Kramis et al., 1975), their expected coexpression during behavior is also a potential source of oscillatory interference and TPSM generation.

View all citing articles on Scopus
View full text