Skip to main content
Log in

Dynamics of sensory processing in the dual olfactory pathway of the honeybee

  • Review article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Insects identify and evaluate behaviorally relevant odorants in complex natural scenes where odor concentrations and mixture composition can change rapidly. This requires fast and reliable information processing in the olfactory system. Here, we review recent experimental findings and theoretical hypotheses on olfactory processing in the honeybee with a focus on its temporal dynamics. Specifically we address odor response characteristics of antennal lobe interneurons and projection neurons, local processing of elemental odors and odor blends, the functional role of the dual olfactory pathway in the honeybee, population coding in uniglomerular projection neurons, and a novel model for sparse and reliable coding in projection neurons and mushroom body Kenyon cells. It is concluded that the olfactory system of the honeybee implements a fast and reliable coding scheme optimized for processing dynamic input within the behaviorally relevant temporal range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Abel, R., Rybak, J., Menzel, R. (2001) Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J. Comp. Neurol. 437, 363–383

    PubMed  CAS  Google Scholar 

  • Abraham, N.M., Spors, H., Carleton, A., Margrie, T.W., Kuner, T., Schaefer, A.T. (2004) Maintaining accuracy at the expense of speed: stimulus similarity defines odor discrimination time in mice. Neuron 44, 865–876

    PubMed  CAS  Google Scholar 

  • Assisi, C., Stopfer, M., Laurent, G., Bazhenov, M. (2007) Adaptive regulation of sparseness by feedforward inhibition. Nat. Neurosci. 10, 1176–84

    PubMed  CAS  Google Scholar 

  • Belmabrouk, H., Nowotny, T., Rospars, J.-P., Martinez, D. (2011) Interaction of cellular and network mechanisms for efficient pheromone coding in moths. PNAS 108, 19790–19795

    PubMed  CAS  Google Scholar 

  • Benda, J., Herz, A.V. (2003) A universal model for spike-frequency adaptation. Neural Comput. 15, 2523–64

    PubMed  Google Scholar 

  • Benda, J., Hennig, R.M. (2008) Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron. J. Comput. Neurosci. 24, 113–36

    PubMed  Google Scholar 

  • Benda, J., Maler, L., Longtin, A. (2010) Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds. J. Neurophysiol. 104, 2806–20

    PubMed  Google Scholar 

  • Beyeler, M., Stefanini, F., Proske, H., Galizia, G., Chicca, E. (2010) Exploring olfactory sensory networks: simulations and hardware emulation. IEEE Biomedical Circuits and Systems Conference (BioCAS) 2010, 270–273

    Google Scholar 

  • Bhandawat, V., Olsen, S., Gouwens, N., Schlief, M., Wilson, R. (2007) Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations. Nat. Neurosci. 10, 1474–1482

    PubMed  CAS  Google Scholar 

  • Blumhagen, F., Zhu, P., Shum, J., Schärer, Y.P.Z., Yaksi, E., Deisseroth, K., Friedrich, R.W. (2011) Neuronal filtering of multiplexed odour representations. Nature 479, 493–500

    PubMed  CAS  Google Scholar 

  • Brandstätter, A.S., Kleineidam, C. (2011) Distributed representation of social odors indicates parallel processing in the antennal lobe of ants. J. Neurophysiol. 106, 2437–2449

    Google Scholar 

  • Brill, M. F., Reus, I., Rosenbaum, T., Kleineidam, C. J., Rössler, W. (2011). Simultaneous recordings from multiple projection neurons in the dual olfactory pathway of the honeybee. Proceedings of the 9th Göttingen Meeting of the German Neuroscience Society: T19-31A.

  • Broome, B.M., Jayaraman, V., Laurent, G. (2006) Encoding and decoding of overlapping odor sequences. Neuron 51(4), 467–82

    PubMed  CAS  Google Scholar 

  • de Bruyne, M., Clyne, P.J., Carlson, J.R. (1999) Odor coding in a model olfactory organ: the Drosophila maxillary palp. J. Neurosci. 19, 4520–4532

    PubMed  Google Scholar 

  • Chacron, M.J., Lindner, B., Longtin, A. (2004) Noise shaping by interval correlations increases information transfer. PRL. doi:10.1103/PhysRevLett.92.080601

  • Chandra, S., Smith, B.H. (1998) An analysis of synthetic processing of odor mixtures in the honeybee. J. Exp. Biol. 201, 3113–3121

    PubMed  CAS  Google Scholar 

  • Chase, S.M., Young, E.D. (2007) First-spike latency information in single neurons increases when referenced to population onset. PNAS 104, 5175–80

    PubMed  CAS  Google Scholar 

  • Daly, K.C., Wright, G.A., Smith, B.H. (2004) Molecular features of odorants systematically influence slow temporal responses across clusters of coordinated antennal lobe units in the moth Manduca sexta. J. Neurophysiol. 92, 236–54

    PubMed  Google Scholar 

  • Daly, K.C., Galán, R.F., Peters, O.J., Staudacher, E.M. (2011) Detailed characterization of local field potential oscillations and their relationship to spike timing in the antennal lobe of the moth Manduca sexta. Front. Neuroeng. 4, 12. doi:10.3389/fneng.2011.00012

    PubMed  CAS  Google Scholar 

  • Davison, I., Katz, L. (2007) Sparse and selective odor coding by mitral/tufted neurons in the main olfactory bulb. J. Neurosci. 27, 2091–2101

    PubMed  CAS  Google Scholar 

  • Deisig, N., Lachnit, H., Giurfa, M., Hellstern, F. (2001) Configural olfactory learning in honeybees: negative and positive patterning discrimination. Learn. Mem. 8(2), 70–78

    PubMed  CAS  Google Scholar 

  • Deisig, N., Lachnit, H., Giurfa, M. (2002) The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations. Learn. Mem. 9(3), 112–121

    PubMed  Google Scholar 

  • Deisig, N., Lachnit, H., Sandoz, J.C., Lober, K., Giurfa, M. (2003) A modified version of the unique cue theory accounts for olfactory compound processing in honeybees. Learn. Mem. 10(3), 199–208

    PubMed  Google Scholar 

  • Deisig, N., Giurfa, M., Lachnit, H., Sandoz, J. (2006) Neural representation of olfactory mixtures in the honeybee antennal lobe. Eur. J. Neurosci. 24, 1161–1174

    PubMed  Google Scholar 

  • Deisig N, Giurfa M, Sandoz JC (2010) Antennal lobe processing increases separability of odor mixture representations in the honeybee. J. Neurophysiol. 103:2185–2194

    Google Scholar 

  • Demmer, H., Kloppenburg, P. (2009) Intrinsic membrane properties and inhibitory synaptic input of kenyon cells as mechanisms for sparse coding? J Neurophysiol. 102(3), 1538–50

    PubMed  CAS  Google Scholar 

  • Esslen, J., Kaissling, K. (1976) Zahl und Verteilung antennaler Sensillen bei der Honigbiene Apis mellifera L. Zoomorphologie 83, 227–251

    Google Scholar 

  • Farkhooi, F., Strube, M., Nawrot, M.P. (2009a) Serial correlation in neural spike trains: experimental evidence, stochastic modelling, and single neuron variability. Phys. Rev. E 79, 021905

    Google Scholar 

  • Farkhooi, F., Müller, E., Nawrot, M.P. (2009b) Sequential sparsing by successive adapting neural populations. BMC Neurosci. 10(I), O10. doi:10.1186/1471-2202-10-S1-O10

    Google Scholar 

  • Farkhooi, F., Müller, E., Nawrot, M.P. (2011) Adaptation reduces variability of the neuronal population code. Phys. Rev. E 83, 050905

    Google Scholar 

  • Farkhooi F, Muller E, Nawrot MP (2010) Sequential sparsening by successive adaptation in neural populations. arXiv:1007.2345v1

  • Farkhooi F (2011) Emergent properties of spike-frequency adaptation in neuronal systems: non-renewal statistics, variability reduction and sparsening. Ph.D. thesis, Freie Universität Berlin. http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000025213

  • Felsen, G., Dan, Y. (2004) A natural approach to studying vision. Nat. Neurosci. 8, 1643–1646

    Google Scholar 

  • Fernandez, P.C., Locatelli, F.F., Person-Rennell, N., Deleo, G., Smith, B.H. (2009) Associative conditioning tunes transient dynamics of early olfactory processing. J. Neurosci. 29(33), 10191–202

    PubMed  CAS  Google Scholar 

  • Friedrich, R.W., Laurent, G. (2001) Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291, 889–94

    PubMed  CAS  Google Scholar 

  • Fujiwara, T., Kazawa, T., Haupt, S.S., Kanzaki, R. (2009) Ca2+ imaging of identifiable neurons labeled by electroporation in insect brains. Chem. Senses 20, 1061–1065

    Google Scholar 

  • Fonta, C., Sun, X., Masson, C. (1993) Morphology and spatial distribution of bee antennal lobe interneurones responsive to odours. Chem. Senses 18, 101–119

    Google Scholar 

  • Galán, R.F., Weidert, M., Menzel, R., Herz, A.V., Galizia, C.G. (2006) Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli. Neural Comput. 18, 10–25

    PubMed  Google Scholar 

  • Galili, D.S., Lüdke, A., Galizia, C.G., Szyszka, P., Tanimoto, H. (2011) Olfactory trace conditioning in Drosophila. J. Neurosci. 31, 7240–7248

    PubMed  CAS  Google Scholar 

  • Galizia, C., Kimmerle, B. (2004) Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy. J. Comp. Physiol. A 190, 21–38

    CAS  Google Scholar 

  • Galizia, C.G., Sachse, S., Rappert, A., Menzel, R. (1999) The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nat. Neurosci. 2, 473–8

    PubMed  CAS  Google Scholar 

  • Galizia, C., Menzel, R. (2000) Odour perception in honeybees: coding information in glomerular patterns. Curr. Opin. Neurobiol. 10, 504–510

    PubMed  CAS  Google Scholar 

  • Galizia, C.G., Rössler, W. (2010) Parallel olfactory systems in insects: anatomy and function. Annu. Rev. Entomol. 55, 399–420

    PubMed  CAS  Google Scholar 

  • Ganeshina, O., Menzel, R. (2001) GABA-immunoreactive neurons in the mushroom bodies of the honeybee: an electron microscopic study. J. Comp. Neurol. 437(3), 335–349

    PubMed  CAS  Google Scholar 

  • Geffen, M.N., Broome, B.M., Laurent, G., Meister, M. (2009) Neural encoding of rapidly fluctuating odors. Neuron 61, 570–86

    PubMed  CAS  Google Scholar 

  • Grünewald, B. (1993) Differential expression of voltage-sensitive K+ and Ca2+ currents in neurons of the honeybee olfactory pathway. J. Exp. Biol. 206, 117–129

    Google Scholar 

  • Guerrieri, F., Schubert, M., Sandoz, J., Giurfa, M. (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol. 3, e60

    PubMed  Google Scholar 

  • Haase, A., Rigosi, E., Trona, F., Anfora, G., Vallortigara, G., Antolini, R., Vinegoni, C. (2010) In-vivo two-photon imaging of the honey bee antennal lobe. Biomed. Opt. Express 2, 131–8

    PubMed  Google Scholar 

  • Hallem, E.A., Carlson, J.R. (2006) Coding of odors by a receptor repertoire. Cell 125, 143–60

    PubMed  CAS  Google Scholar 

  • Hansson, B.S., Stensmyr, M.C. (2011) Evolution of insect olfaction. Neuron 72, 698–711

    PubMed  CAS  Google Scholar 

  • Häusler C, Nawrot MP, Schmuker M (2011) A spiking neuron classifier network with a deep architecture inspired by the olfactory system of the honeybee. Proceedings of the 5th International IEEE EMBS Conference on Neural Engineering, Cancun, Mexico, April 27–May 1, 2011: 198–202

  • Hebb, D.O. (1949) The organisation of behavior. Wiley, New York

    Google Scholar 

  • Holt, G.R., Softky, W.R., Koch, C., Douglas, R.J. (1996) Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J. Neurophysiol. 75, 1806–1814

    PubMed  CAS  Google Scholar 

  • Honegger, K.S., Campbell, R.A.A., Turner, G.C. (2011) Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body. J. Neurosci. 31, 11772–11785

    PubMed  CAS  Google Scholar 

  • Ito, I., Ong, R.C., Raman, B., Stopfer, M. (2008) Sparse odor representation and olfactory learning. Nat. Neurosci. 11(10), 1177–84

    PubMed  CAS  Google Scholar 

  • Jarriault, D., Gadenne, C., Lucas, P., Rospars, J.-P., Anton, S. (2010) Transformation of the sex pheromone signal in the noctuid moth agrotis ipsilon: from peripheral input to antennal lobe output. Chem. Senses 35, 705–715

    PubMed  Google Scholar 

  • Joerges, J., Küttner, A., Galizia, C.G., Menzel, R. (1997) Representation of odours and odour mixtures visualized in the honeybee brain. Nature 387, 285–288

    CAS  Google Scholar 

  • Jortner, R.A., Farivar, S.S., Laurent, G. (2007) A simple connectivity scheme for sparse coding in an olfactory system. J. Neurosci. 27, 1659–69

    PubMed  CAS  Google Scholar 

  • Junek, S., Kludt, E., Wolf, F., Schild, D. (2010) Olfactory coding with patterns of response latencies. Neuron 67, 872–884

    PubMed  CAS  Google Scholar 

  • Kazama, H., Wilson, R.I. (2008) Homeostatic matching and nonlinear amplification at identified central synapses. Neuron 58(3), 401–13

    PubMed  CAS  Google Scholar 

  • Kazama, H., Wilson, R.I. (2009) Origins of correlated activity in an olfactory circuit. Nat. Neurosci. 12, 1136–44

    PubMed  CAS  Google Scholar 

  • Kirschner, S., Kleineidam, C., Zube, C., Rybak, J., Grünewald, B., Roessler, W. (2006) Dual olfactory pathway in the honeybee, Apis mellifera. J. Comp. Neurol. 499, 933–952

    PubMed  Google Scholar 

  • Krofczik, S., Menzel, R., Nawrot, M.P. (2008) Rapid odor processing in the honeybee antennal lobe network. Front. Comput. Neurosci. 2, 9

    PubMed  Google Scholar 

  • Kuebler, L.S., Olsson, S.B., Weniger, R., Hansson, B.S. (2011) Neuronal processing of complex mixtures establishes a unique odor representation in the moth antennal lobe. Front. Neural Circuits 5, 7

    PubMed  Google Scholar 

  • Laurent, G., Davidowitz, H. (1994) Encoding of olfactory information with oscillating neural assemblies. Science 265, 1872–5

    PubMed  CAS  Google Scholar 

  • Linster, C., Smith, B.H. (1997) A computational model of the response of honey bee antennal lobe circuitry to odor mixtures: overshadowing, blocking and unblocking can arise from lateral inhibition. Behav. Brain Res. 87, 1–14

    PubMed  CAS  Google Scholar 

  • Linster, C., Sachse, S., Galizia, C.G. (2005) Computational modeling suggests that response properties rather than spatial position determine connectivity between olfactory glomeruli. J. Neurophys. 93, 3410–3417

    Google Scholar 

  • Lundstrom, B.N., Higgs, M.H., Spain, W.J., Fairhall, A.L. (2008) Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335–1342

    PubMed  CAS  Google Scholar 

  • Martin, J.P., Beyerlein, A., Dacks, A.M., Reisenman, C.E., Riffell, J.A., Lei, H., Hildebrand, J.G. (2011) The neurobiology of insect olfaction: sensory processing in a comparative context. Prog. Neurobiol. 95, 427–447

    PubMed  Google Scholar 

  • Mazor, O., Laurent, G. (2005) Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661–673

    PubMed  CAS  Google Scholar 

  • Menzel, R., Bitterman, M.E. (1983) Learning by honey bees in an unnatural situation. In: Huber, F., Markl, H. (eds.) Neuroethology and Behavioral Physiology, pp. 206–215. Springer, Berlin

    Google Scholar 

  • Mercer, A.R., Hildebrand, J.G. (2002) Developmental changes in the electrophysiological properties and response characteristics of Manduca antennal-lobe neurons. J. Neurophysiol. 87, 2650–2663

    PubMed  Google Scholar 

  • Meyer A (2011) Characterisation of local interneurons in the antennal lobe of the honeybee. Dissertation, University of Konstanz, Germany. http://nbn-resolving.de/urn:nbn:de:bsz:352-162535

  • Meyer, A., Galizia, C.G. (2012) Elemental and configural olfactory-coding by antennal lobe neurons of the honey bee (Apis mellifera). J. Comp. Physiol. A 198(2), 159–171

    Google Scholar 

  • Meyer, A., Galizia, C., Nawrot, M.P. (2011) A spiking point of view—is it possible to predict a neurons morphology from its electrophysiological activity? Front. Comput. Neurosci.. doi:10.3389/conf.fncom.2011.53.0015. Conference Abstract

  • Müller, E., Buesing, L., Schemmel, J., Meier, K. (2007) Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories. Neural Comput. 19(11), 2958–3010

    PubMed  Google Scholar 

  • Müller, D., Abel, R., Brandt, R., Zoeckler, M., Menzel, R. (2002) Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. J. Comp. Physiol. A 188, 359–370

    Google Scholar 

  • Nagel, K.I., Wilson, R.I. (2010) Biophysical mechanisms underlying olfactory receptor neuron dynamics. Nat. Neurosci. 14, 208–218

    Google Scholar 

  • Namiki, S., Kanzaki, R. (2008) Reconstructing the population activity of olfactory output neurons that innervate identifiable processing units. Front. Neural Circuits 2, 1

    PubMed  Google Scholar 

  • Namiki, S., Haupt, S.S., Kazawa, T., Takashima, A., Ikeno, H., Kanzaki, R. (2009) Reconstruction of virtual neural circuits in an insect brain. Front. Neurosci. 3(2), 206–13

    PubMed  Google Scholar 

  • Nawrot, M.P. (2010) Analysis and interpretation of interval and count variability in neural spike trains. In: Grün, S., Rotter, S. (eds.) Analysis of Parallel Spike Trains. Springer, New York

    Google Scholar 

  • Nawrot MP, Krofczik S, Farkhooi F, Menzel R (2010) Fast dynamics of odor rate coding in the insect antennal lobe. arXiv:1101.0271v1

  • Okada, R., Rybak, J., Manz, G., Menzel, R. (2007) Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J. Neurosci. 27, 11736–47

    PubMed  CAS  Google Scholar 

  • Olsen, S.R., Bhandawat, V., Wilson, R.I. (2007) Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron 54, 89–103

    PubMed  CAS  Google Scholar 

  • Pamir, E., Chakroborty, N.K., Stollhoff, N., Gehring, K.B., Antemann, V., Morgenstern, L., Felsenberg, J., Eisenhardt, D., Menzel, R., Nawrot, M.P. (2011) Average group behavior does not represent individual behavior in classical conditioning of the honeybee. Learn. Mem. 18, 733–741

    PubMed  Google Scholar 

  • Papadopoulou, M., Cassenaer, S., Nowotny, T., Laurent, G. (2011) Normalization for sparse encoding of odors by a wide-field interneuron. Science 332, 721–5

    PubMed  CAS  Google Scholar 

  • Peele P, Ditzen M, Menzel R, Galizia CG (2006) Appetitive odor learning does not change olfactory coding in a subpopulation of honeybee antennal lobe neurons. J Comp Physiol A 192: 1083-1103. doi:10.1007/s00359-006-0152-3

  • Pelz, C., Gerber, B., Menzel, R. (1997) Odorant intensity as a determinant for olfactory conditioning in honeybees: roles in discrimination, overshadowing and memory consolidation. J. Exp. Biol. 200, 837–847

    PubMed  CAS  Google Scholar 

  • Perez-Orive, J., Mazor, O., Turner, G., Cassenaer, S., Wilson, R., Laurent, G. (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297, 359–365

    PubMed  CAS  Google Scholar 

  • Ponce-Alvarez, A., Kilavik, B.E., Riehle, A. (2010) Comparison of local measures of spike time irregularity and relating variability to firing rate in motor cortical neurons. J. Comput. Neurosci. 29, 351–365

    PubMed  Google Scholar 

  • Raman, B., Joseph, J., Tang, J., Stopfer, M. (2010) Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors. J. Neurosci. 30, 1994–2006

    PubMed  CAS  Google Scholar 

  • Riffell, J.A., Abrell, L., Hildebrand, J.G. (2008) Physical processes and real-time chemical measurement of the insect olfactory environment. J. Chem. Ecol. 34, 837–853

    PubMed  CAS  Google Scholar 

  • Rinberg, D., Koulakov, A., Gelperin, A. (2006) Sparse odor coding in awake behaving mice. J. Neurosci. 26, 8857–8865

    PubMed  CAS  Google Scholar 

  • Rössler, W., Zube, C. (2011) Dual olfactory pathway in Hymenoptera: evolutionary insights from comparative studies. Arthropod Structure & Development 40, 349–357

    Google Scholar 

  • Rybak, J., Kuss, A., Lamecker, H., Zachow, S., Hege, H.C., Lienhard, M., Singer, J., Neubert, K., Menzel, R. (2010) The digital bee brain: integrating and managing neurons in a common 3D reference system. Front. Neuroinf. 4, 30

    Google Scholar 

  • Rybak J (2012) The digital honey bee brain atlas. In: Galizia CG, Eisenhardt D, Giurfa M (Eds.). Honeybee Neurobiology and Behavior. Springer, Heidelberg, pp. 125–140

  • Rybak J, Menzel R (2010) Mushroom body of the honeybee. In Gordon M. Shepard, Sten Grillner (Eds). Handbook of Brain Microcircuits. Oxford University Press, Oxford, pp. 433–38

  • Sachse, S., Galizia, C.G. (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J. Neurophysiol. 87, 1106–17

    PubMed  Google Scholar 

  • Sachse, S., Galizia, C.G. (2003) The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour computation. Eur. J. Neurosci. 18, 2119–2132

    PubMed  Google Scholar 

  • Sandoz, J.C. (2011) Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Front. Syst. Neurosci. 5, 98. doi:10.3389/fnsys.2011.00098

    PubMed  Google Scholar 

  • Schlief ML, Wilson RI (2007) Olfactory processing and behavior downstream from highly selective receptor neurons. Nat Neurosci 10: 623-630. doi:10.1038/nn1881

  • Schmuker, M., Yamagata, N., Nawrot, M.P., Menzel, R. (2011) Parallel representation of stimulus identity and intensity in a dual pathway model inspired by the olfactory system of the honeybee. Front. Neuroeng. 4, 17. doi:10.3389/fneng.2011.00017

    PubMed  Google Scholar 

  • Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M., Miesenboeck, G. (2007) Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128, 601–612

    PubMed  CAS  Google Scholar 

  • Silbering, A.F., Galizia, C.G. (2007) Processing of odor mixtures in the drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. J. Neurosci. 27, 11966–11977

    PubMed  CAS  Google Scholar 

  • Sivan, E., Kopell, N. (2006) Oscillations and slow patterning in the antennal lobe. J. Comput. Neurosci. 20, 85–96

    PubMed  Google Scholar 

  • Smear, M., Shusterman, R., O'Connor, R., Bozza, T., Rinberg, D. (2011) Perception of sniff phase in mouse olfaction. Nature 479, 397–400. doi:10.1038/nature10521

    PubMed  CAS  Google Scholar 

  • Spors, H., Wachowiak, M., Cohen, L.B., Friedrich, R.W. (2006) Temporal dynamics and latency patterns of receptor neuron input to the olfactory bulb. J. Neurosci. 26(4), 1247–59

    PubMed  CAS  Google Scholar 

  • Staudacher, E.M., Huetteroth, W., Schachtner, J., Daly, K.C. (2009) A 4-dimensional representation of antennal lobe output based on an ensemble of characterized projection neurons. J. Neurosci. Meth. 180, 208–223

    Google Scholar 

  • Stopfer, M., Bhagavan, S., Smith, B.H., Laurent, G. (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390, 70–4

    PubMed  CAS  Google Scholar 

  • Stopfer, M., Jayaraman, V., Laurent, G. (2003) Intensity versus identity coding in an olfactory system. Neuron 39(6), 991–1004

    PubMed  CAS  Google Scholar 

  • Strube-Bloss, M., Nawrot, M.P., Menzel, R. (2011) Mushroom body output neurons encode odor-reward associations. J. Neurosci. 31(8), 3129–3140

    PubMed  CAS  Google Scholar 

  • Sun, X.-J., Fonta, C., Masson, C. (1993) Odour quality processing by bee antennal lobe interneurons. Chem. Senses 18, 355–377

    CAS  Google Scholar 

  • Szyszka, P., Ditzen, M., Galkin, A., Galizia, G., Menzel, R. (2005) Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. J. Neurophysiol. 94, 3303–3313

    PubMed  Google Scholar 

  • Szyszka, P., Galkin, A., Menzel, R. (2008) Associative and non-associative plasticity in Kenyon cells of the honeybee mushroom body. Front. Syst. Neurosci. 2, 3

    PubMed  Google Scholar 

  • Szyszka, P., Demmler, C., Oemisch, M., Sommer, L., Biergans, S., Birnbach, B., Silbering, A.F., Galizia, C.G. (2011) Mind the gap: olfactory trace conditioning in honeybees. J. Neurosci. 31, 7229–7239

    PubMed  CAS  Google Scholar 

  • Thorpe, S., Delorme, A., Van Rullen, R. (2001) Spike-based strategies for rapid processing. Neural Netw. 14, 715–725

    PubMed  CAS  Google Scholar 

  • Tripp, B., Eliasmith, C. (2010) Population models of temporal differentiation. Neural Comput. 22(3), 621–659

    PubMed  Google Scholar 

  • Uchida, N., Mainen, Z.F. (2003) Speed and accuracy of olfactory discrimination in the rat. Nat. Neurosci. 6, 1224–1229

    PubMed  CAS  Google Scholar 

  • Urban, N.N. (2002) Lateral inhibition in the olfactory bulb and in olfaction. Physiol. Behav. 77, 607–12

    PubMed  CAS  Google Scholar 

  • Vickers, N.J., Christensen, T.A., Baker, T.C., Hildebrand, J.G. (2001) Odour-plume dynamics influence the brain’s olfactory code. Nature 410, 466–470

    PubMed  CAS  Google Scholar 

  • Wesson, D., Carey, R., Verhagen, J., Wachowiak, M. (2008) Rapid encoding and perception of novel odors in the rat. PLoS Biol. 6, e82

    PubMed  Google Scholar 

  • Wick, S.D., Wiechert, M.T., Friedrich, R.W., Riecke, H. (2010) Pattern orthogonalization via channel decorrelation by adaptive networks. J. Comput. Neurosci. 28, 29–45

    PubMed  Google Scholar 

  • Wilson, R.I., Laurent, G. (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–79

    PubMed  CAS  Google Scholar 

  • Wilson, R., Turner, G., Laurent, G. (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366–370

    PubMed  CAS  Google Scholar 

  • Wright, G.A., Thomson, M.G., Smith, B.H. (2005) Odour concentration affects odour identity in honeybees. Proc Biol Sci 272, 2417–2422

    PubMed  Google Scholar 

  • Wright, G.A., Carlton, M., Smith, B.H. (2009) A honeybee’s ability to learn, recognize, and discriminate odors depends upon odor sampling time and concentration. Behav. Neurosci. 123, 36–43

    PubMed  Google Scholar 

  • Yamagata, N., Schmuker, M., Szyszka, P., Mizunami, M., Menzel, R. (2009) Differential odor processing in two olfactory pathways in the honeybee. Front. Syst. Neurosci. 3, 16. doi:10.3389/neuro.06.016.2009

    PubMed  Google Scholar 

Download references

Acknowledgments

I thank Sabine Krofczik and Randolf Menzel for providing me with the electrophysiological data that was reproduced in Figures 2, 3, 4, and 5 and Farzad Farkhooi for carrying out the simulations shown in Figure 7. I am grateful to Jürgen Rybak for the 3D visualization of neurons in the Honeybee Standard Brain atlas (Figure 1) and for his helpful comments on an earlier version of this manuscript. I thank Randolf Menzel, Anneke Meyer, Paul Szyszka and Michael Schmuker for valuable discussions and Chris Häusler for the language check. We acknowledge generous funding from the German Federal Ministry of Education and Research to the Bernstein Focus Learning and Memory—Insect inspired robots (01GQ0941) and to the Bernstein Center for Computational Neuroscience Berlin (01GQ1001D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Paul Nawrot.

Additional information

Manuscript editor: Bernd Grünewald

Dynamique du traitement sensoriel dans les voies olfactives dédoublées chez l'abeille.

Lobe antennaire / codage raréfié / codage de la latence / codage de la trace / olfaction

Dynamik sensorischer Verarbeitung im dualen olfaktorischen Pfad der Honigbiene

Antennallobus / spärliche Kodierung / Latenzkodierung / Duftspur / Geruchssinn

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1383 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nawrot, M.P. Dynamics of sensory processing in the dual olfactory pathway of the honeybee. Apidologie 43, 269–291 (2012). https://doi.org/10.1007/s13592-012-0131-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-012-0131-3

Keywords

Navigation