Skip to main content

Advertisement

Log in

Traumatic Brain Injury Using Mouse Models

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The use of mouse models in traumatic brain injury (TBI) has several advantages compared to other animal models including low cost of breeding, easy maintenance, and innovative technology to create genetically modified strains. Studies using knockout and transgenic mice demonstrating functional gain or loss of molecules provide insight into basic mechanisms of TBI. Mouse models provide powerful tools to screen for putative therapeutic targets in TBI. This article reviews currently available mouse models that replicate several clinical features of TBI such as closed head injuries (CHI), penetrating head injuries, and a combination of both. CHI may be caused by direct trauma creating cerebral concussion or contusion. Sudden acceleration–deceleration injuries of the head without direct trauma may also cause intracranial injury by the transmission of shock waves to the brain. Recapitulation of temporary cavities that are induced by high-velocity penetrating objects in the mouse brain are difficult to produce, but slow brain penetration injuries in mice are reviewed. Synergistic damaging effects on the brain following systemic complications are also described. Advantages and disadvantages of CHI mouse models induced by weight drop, fluid percussion, and controlled cortical impact injuries are compared. Differences in the anatomy, biomechanics, and behavioral evaluations between mice and humans are discussed. Although the use of mouse models for TBI research is promising, further development of these techniques is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

TBI:

Traumatic brain injury

DAI:

Diffuse axonal injury

PBI:

Penetrating brain injury

CHI:

Closed head injury

CCI:

Controlled cortical impact

FPI:

Fluid percussion injury

SBS:

Shaken baby syndrome

bTBI:

Blast-induced traumatic brain injury

PTSD:

Post-traumatic stress disorder

PI:

Postinjury

References

  1. Adams JH, Graham DI, Murray LS, Scott G. Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol. 1982;12(6):557–63.

    PubMed  CAS  Google Scholar 

  2. Ahmad A, Crupi R, Campolo M, Genovese T, Esposito E, Cuzzocrea S. Absence of TLR4 reduces neurovascular unit and secondary inflammatory process after traumatic brain injury in mice. PLoS One. 2013;8(3):e57208.

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Albert-Weissenberger C, Stetter C, Meuth SG, Gobel K, Bader M, Siren AL, et al. Blocking of bradykinin receptor B1 protects from focal closed head injury in mice by reducing axonal damage and astroglia activation. J Cereb Blood Flow Metab. 2012;32(9):1747–56.

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Alder J, Fujioka W, Lifshitz J, Crockett DP, Thakker-Varia S. Lateral fluid percussion: model of traumatic brain injury in mice. J Vis Exp. 2011;(54):3063.

  5. Alessandri B, Nishioka T, Heimann A, Bullock RM, Kempski O. Caspase-dependent cell death involved in brain damage after acute subdural hematoma in rats. Brain Res. 2006;1111(1):196–202.

    PubMed  CAS  Google Scholar 

  6. Amat JA, Ishiguro H, Nakamura K, Norton WT. Phenotypic diversity and kinetics of proliferating microglia and astrocytes following cortical stab wounds. Glia. 1996;16(4):368–82.

    PubMed  CAS  Google Scholar 

  7. Armonda RA, Bell RS, Vo AH, Ling G, DeGraba TJ, Crandall B, et al. Wartime traumatic cerebral vasospasm: recent review of combat casualties. Neurosurgery. 2006;59(6):1215–25.

    PubMed  Google Scholar 

  8. Arun P, bu-Taleb R, Oguntayo S, Wang Y, Valiyaveettil M, Long J, et al. Acute mitochondrial dysfunction after blast exposure: potential role of mitochondrial glutamate oxaloacetate transaminase. J Neurotrauma. 2014; (in press)

  9. Arun P, Oguntayo S, Alamneh Y, Honnold C, Wang Y, Valiyaveettil M, et al. Rapid release of tissue enzymes into blood after blast exposure: potential use as biological dosimeters. PLoS One. 2012;7(4):e33798.

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Bachstetter AD, Rowe RK, Kaneko M, Goulding D, Lifshitz J, Van Eldik LJ. The p38alpha MAPK regulates microglial responsiveness to diffuse traumatic brain injury. J Neurosci. 2013;33(14):6143–53.

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Baranova AI, Whiting MD, Hamm RJ. Delayed, post-injury treatment with aniracetam improves cognitive performance after traumatic brain injury in rats. J Neurotrauma. 2006;23(8):1233–40.

    PubMed  Google Scholar 

  12. Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG. Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma. 2006;23(5):635–59.

    PubMed  Google Scholar 

  13. Bate AJ, Mathias JL, Crawford JR. Performance on the test of everyday attention and standard tests of attention following severe traumatic brain injury. Clin Neuropsychol. 2001;15(3):405–22.

    PubMed  CAS  Google Scholar 

  14. Bauman RA, Ling G, Tong L, Januszkiewicz A, Agoston D, Delanerolle N, et al. An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast. J Neurotrauma. 2009;26(6):841–60.

    PubMed  Google Scholar 

  15. Benson MD, Romero MI, Lush ME, Lu QR, Henkemeyer M, Parada LF. Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc Natl Acad Sci U S A. 2005;102(30):10694–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Benson RR, Gattu R, Sewick B, Kou Z, Zakariah N, Cavanaugh JM, et al. Detection of hemorrhagic and axonal pathology in mild traumatic brain injury using advanced MRI: implications for neurorehabilitation. NeuroRehabilitation. 2012;31(3):261–79.

    PubMed  Google Scholar 

  17. Bolkvadze T, Pitkanen A. Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. J Neurotrauma. 2012;29(5):789–812.

    PubMed  Google Scholar 

  18. Bonnier C, Mesples B, Carpentier S, Henin D, Gressens P. Delayed white matter injury in a murine model of shaken baby syndrome. Brain Pathol. 2002;12(3):320–8.

    PubMed  CAS  Google Scholar 

  19. Bonnier C, Mesples B, Gressens P. Animal models of shaken baby syndrome: revisiting the pathophysiology of this devastating injury. Pediatr Rehabil. 2004;7(3):165–71.

    PubMed  Google Scholar 

  20. Bouet V, Boulouard M, Toutain J, Divoux D, Bernaudin M, Schumann-Bard P, et al. The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc. 2009;4(10):1560–4.

    PubMed  CAS  Google Scholar 

  21. Boulet T, Kelso ML, Othman SF. Long term in vivo imaging of viscoelastic properties of the mouse brain following controlled cortical impact. J Neurotrauma. 2014; (in press)

  22. Bramlett HM, Dietrich WD, Green EJ. Secondary hypoxia following moderate fluid percussion brain injury in rats exacerbates sensorimotor and cognitive deficits. J Neurotrauma. 1999;16(11):1035–47.

    PubMed  CAS  Google Scholar 

  23. Brody DL, Holtzman DM. Morris water maze search strategy analysis in PDAPP mice before and after experimental traumatic brain injury. Exp Neurol. 2006;197(2):330–40.

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Buckingham ET, Daniolos P. Longitudinal outcomes for victims of child abuse. Curr Psychiatr Rep. 2013;15(2):342.

    Google Scholar 

  25. Cai W, Carlson SW, Brelsfoard JM, Mannon CE, Moncman CL, Saatman KE, et al. Rit GTPase signaling promotes immature hippocampal neuronal survival. J Neurosci. 2012;32(29):9887–97.

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Cantu RC, Gean AD. Second-impact syndrome and a small subdural hematoma: an uncommon catastrophic result of repetitive head injury with a characteristic imaging appearance. J Neurotrauma. 2010;27(9):1557–64.

    PubMed Central  PubMed  Google Scholar 

  27. Carbonell WS, Maris DO, McCall T, Grady MS. Adaptation of the fluid percussion injury model to the mouse. J Neurotrauma. 1998;15(3):217–29.

    PubMed  CAS  Google Scholar 

  28. Carroll CP, Cochran JA, Price JP, Guse CE, Wang MC. The AIS-2005 revision in severe traumatic brain injury: mission accomplished or problems for future research? Ann Adv Automot Med. 2010;54:233–8.

    PubMed Central  PubMed  Google Scholar 

  29. Cernak I, Merkle AC, Koliatsos VE, Bilik JM, Luong QT, Mahota TM, et al. The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol Dis. 2011;41(2):538–51.

    PubMed  Google Scholar 

  30. Chavko M, Watanabe T, Adeeb S, Lankasky J, Ahlers ST, McCarron RM. Relationship between orientation to a blast and pressure wave propagation inside the rat brain. J Neurosci Methods. 2011;195(1):61–6.

    PubMed  Google Scholar 

  31. Chen SF, Tsai HJ, Hung TH, Chen CC, Lee CY, Wu CH, et al. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS One. 2012;7(9):e45763.

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E. An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. J Neurotrauma. 1996;13(10):557–68.

    PubMed  CAS  Google Scholar 

  33. Chen Y, Huang W. Non-impact, blast-induced mild TBI and PTSD: concepts and caveats. Brain Inj. 2011;25(7–8):641–50.

    PubMed  Google Scholar 

  34. Chen Z, Leung LY, Mountney A, Liao Z, Yang W, Lu XC, et al. A novel animal model of closed-head concussive-induced mild traumatic brain injury: development, implementation, and characterization. J Neurotrauma. 2012;29(2):268–80.

    PubMed  CAS  Google Scholar 

  35. Cheng ZG, Zhang GD, Shi PQ, Du BS. Expression and antioxidation of Nrf2/ARE pathway in traumatic brain injury. Asian Pac J Trop Med. 2013;6(4):305–10.

    PubMed  CAS  Google Scholar 

  36. Cherian L, Robertson CS, Goodman JC. Secondary insults increase injury after controlled cortical impact in rats. J Neurotrauma. 1996;13(7):371–83.

    PubMed  CAS  Google Scholar 

  37. Chrzaszcz M, Venkatesan C, Dragisic T, Watterson DM, Wainwright MS. Minozac treatment prevents increased seizure susceptibility in a mouse “two-hit” model of closed skull traumatic brain injury and electroconvulsive shock-induced seizures. J Neurotrauma. 2010;27(7):1283–95.

    PubMed Central  PubMed  Google Scholar 

  38. Clausen F, Hanell A, Bjork M, Hillered L, Mir AK, Gram H, et al. Neutralization of interleukin-1beta modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur J Neurosci. 2009;30(3):385–96.

    PubMed  Google Scholar 

  39. Conte V, Uryu K, Fujimoto S, Yao Y, Rokach J, Longhi L, et al. Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. J Neurochem. 2004;90(3):758–64.

    PubMed  CAS  Google Scholar 

  40. Corrigan JD, Selassie AW, Orman JA. The epidemiology of traumatic brain injury. J Head Trauma Rehabil. 2010;25(2):72–80.

    PubMed  Google Scholar 

  41. Courtney MW, Courtney AC. Working toward exposure thresholds for blast-induced traumatic brain injury: thoracic and acceleration mechanisms. Neuroimage. 2011;54 Suppl 1:S55–61.

    PubMed  Google Scholar 

  42. Creeley CE, Wozniak DF, Bayly PV, Olney JW, Lewis LM. Multiple episodes of mild traumatic brain injury result in impaired cognitive performance in mice. Acad Emerg Med. 2004;11(8):809–19.

    PubMed  Google Scholar 

  43. Cunha MP, Machado DG, Bettio LE, Capra JC, Rodrigues AL. Interaction of zinc with antidepressants in the tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(8):1913–20.

    PubMed  CAS  Google Scholar 

  44. Dapul HR, Park J, Zhang J, Lee C, DanEshmand A, Lok J, et al. Concussive injury before or after controlled cortical impact exacerbates histopathology and functional outcome in a mixed traumatic brain injury model in mice. J Neurotrauma. 2013;30(5):382–91.

    PubMed Central  PubMed  Google Scholar 

  45. Davidsson J, Risling M. A new model to produce sagittal plane rotational induced diffuse axonal injuries. Front Neurol. 2011;2:41.

    PubMed Central  PubMed  Google Scholar 

  46. DeFord SM, Wilson MS, Rice AC, Clausen T, Rice LK, Barabnova A, et al. Repeated mild brain injuries result in cognitive impairment in B6C3F1 mice. J Neurotrauma. 2002;19(4):427–38.

    PubMed  Google Scholar 

  47. Dennis AM, Haselkorn ML, Vagni VA, Garman RH, Janesko-Feldman K, Bayir H, et al. Hemorrhagic shock after experimental traumatic brain injury in mice: effect on neuronal death. J Neurotrauma. 2009;26(6):889–99.

    PubMed Central  PubMed  Google Scholar 

  48. DePalma RG, Burris DG, Champion HR, Hodgson MJ. Blast injuries. N Engl J Med. 2005;352(13):1335–42.

    PubMed  CAS  Google Scholar 

  49. DeRoss AL, Adams JE, Vane DW, Russell SJ, Terella AM, Wald SL. Multiple head injuries in rats: effects on behavior. J Trauma. 2002;52(4):708–14.

    PubMed  Google Scholar 

  50. Dikranian K, Cohen R, Mac DC, Pan Y, Brakefield D, Bayly P, et al. Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons. Exp Neurol. 2008;211(2):551–60.

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods. 1991;39(3):253–62.

    PubMed  CAS  Google Scholar 

  52. Dixon CE, Lighthall JW, Anderson TE. Physiologic, histopathologic, and cineradiographic characterization of a new fluid-percussion model of experimental brain injury in the rat. J Neurotrauma. 1988;5(2):91–104.

    PubMed  CAS  Google Scholar 

  53. Doering P, Stoltenberg M, Penkowa M, Rungby J, Larsen A, Danscher G. Chemical blocking of zinc ions in CNS increases neuronal damage following traumatic brain injury (TBI) in mice. PLoS One. 2010;5(4):e10131.

    PubMed Central  PubMed  Google Scholar 

  54. Dohi K, Ohtaki H, Nakamachi T, Yofu S, Satoh K, Miyamoto K, et al. Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation. 2010;7:41.

    PubMed Central  PubMed  Google Scholar 

  55. Ekmark-Lewen S, Lewen A, Meyerson BJ, Hillered L. The multivariate concentric square field test reveals behavioral profiles of risk taking, exploration, and cognitive impairment in mice subjected to traumatic brain injury. J Neurotrauma. 2010;27(9):1643–55.

    PubMed  Google Scholar 

  56. Elder GA, Dorr NP, De GR, Gama Sosa MA, Shaughness MC, Maudlin-Jeronimo E, et al. Blast exposure induces post-traumatic stress disorder-related traits in a rat model of mild traumatic brain injury. J Neurotrauma. 2012;29(16):2564–75.

    PubMed Central  PubMed  Google Scholar 

  57. Eugenin EA, Eckardt D, Theis M, Willecke K, Bennett MV, Saez JC. Microglia at brain stab wounds express connexin 43 and in vitro form functional gap junctions after treatment with interferon-gamma and tumor necrosis factor-alpha. Proc Natl Acad Sci U S A. 2001;98(7):4190–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  58. Exo JL, Shellington DK, Bayir H, Vagni VA, Janesco-Feldman K, Ma L, et al. Resuscitation of traumatic brain injury and hemorrhagic shock with polynitroxylated albumin, hextend, hypertonic saline, and lactated Ringer’s: effects on acute hemodynamics, survival, and neuronal death in mice. J Neurotrauma. 2009;26(12):2403–8.

    PubMed Central  PubMed  Google Scholar 

  59. Feng JF, Gurkoff GG, Van KC, Song M, Lowe DA, Zhou J, et al. NAAG peptidase inhibitor reduces cellular damage in a model of TBI with secondary hypoxia. Brain Res. 2012;1469:144–52.

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E. Mouse closed head injury model induced by a weight-drop device. Nat Protoc. 2009;4(9):1328–37.

    PubMed  CAS  Google Scholar 

  61. Foda MA, Marmarou A. A new model of diffuse brain injury in rats. Part II: morphological characterization. J Neurosurg. 1994;80(2):301–13.

    PubMed  CAS  Google Scholar 

  62. Foley LM, Iqbal O'Meara AM, Wisniewski SR, Kevin HT, Melick JA, Ho C, et al. MRI assessment of cerebral blood flow after experimental traumatic brain injury combined with hemorrhagic shock in mice. J Cereb Blood Flow Metab. 2013;33(1):129–36.

    PubMed Central  PubMed  Google Scholar 

  63. Freret T, Bouet V, Leconte C, Roussel S, Chazalviel L, Divoux D, et al. Behavioral deficits after distal focal cerebral ischemia in mice: usefulness of adhesive removal test. Behav Neurosci. 2009;123(1):224–30.

    PubMed  Google Scholar 

  64. Fujimoto ST, Longhi L, Saatman KE, Conte V, Stocchetti N, McIntosh TK. Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev. 2004;28(4):365–78.

    PubMed  Google Scholar 

  65. Garner J, Brett SJ. Mechanisms of injury by explosive devices. Anesthesiol Clin. 2007;25(1):147–60. x.

    PubMed  Google Scholar 

  66. Gennarelli TA. Animate models of human head injury. J Neurotrauma. 1994;11(4):357–68.

    PubMed  CAS  Google Scholar 

  67. Ghajar J. Traumatic brain injury. Lancet. 2000;356(9233):923–9.

    PubMed  CAS  Google Scholar 

  68. Gilad R, Boaz M, Sadeh M, Eilam A, Dabby R, Lampl Y. Seizures after very mild head or spine trauma. J Neurotrauma. 2013;30(6):469–72.

    PubMed  Google Scholar 

  69. Gilmer LK, Roberts KN, Scheff SW. Efficacy of progesterone following a moderate unilateral cortical contusion injury. J Neurotrauma. 2008;25(6):593–602.

    PubMed Central  PubMed  Google Scholar 

  70. Giri BK, Krishnappa IK, Bryan Jr RM, Robertson C, Watson J. Regional cerebral blood flow after cortical impact injury complicated by a secondary insult in rats. Stroke. 2000;31(4):961–7.

    PubMed  CAS  Google Scholar 

  71. Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med. 2012;4(134):134ra60.

    PubMed Central  PubMed  Google Scholar 

  72. Gomes PS, Fernandes MH. Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim. 2011;45(1):14–24.

    PubMed  CAS  Google Scholar 

  73. Goodman MD, Makley AT, Huber NL, Clarke CN, Friend LA, Schuster RM, et al. Hypobaric hypoxia exacerbates the neuroinflammatory response to traumatic brain injury. J Surg Res. 2011;165(1):30–7.

    PubMed  CAS  Google Scholar 

  74. Hall ED, Bryant YD, Cho W, Sullivan PG. Evolution of post-traumatic neurodegeneration after controlled cortical impact traumatic brain injury in mice and rats as assessed by the de Olmos silver and fluorojade staining methods. J Neurotrauma. 2008;25(3):235–47.

    PubMed  Google Scholar 

  75. Hamberger A, Viano DC, Saljo A, Bolouri H. Concussion in professional football: morphology of brain injuries in the NFL concussion model—part 16. Neurosurgery. 2009;64(6):1174–82.

    PubMed  Google Scholar 

  76. Hampton DW, Asher RA, Kondo T, Steeves JD, Ramer MS, Fawcett JW. A potential role for bone morphogenetic protein signalling in glial cell fate determination following adult central nervous system injury in vivo. Eur J Neurosci. 2007;26(11):3024–35.

    PubMed  Google Scholar 

  77. Hanell A, Clausen F, Bjork M, Jansson K, Philipson O, Nilsson LN, et al. Genetic deletion and pharmacological inhibition of Nogo-66 receptor impairs cognitive outcome after traumatic brain injury in mice. J Neurotrauma. 2010;27(7):1297–309.

    PubMed Central  PubMed  Google Scholar 

  78. Hanell A, Clausen F, Djupsjo A, Vallstedt A, Patra K, Israelsson C, et al. Functional and histological outcome after focal traumatic brain injury is not improved in conditional EphA4 knockout mice. J Neurotrauma. 2012;29(17):2660–71.

    PubMed  Google Scholar 

  79. Hanif S, Abodunde O, Ali Z, Pidgeon C. Age related outcome in acute subdural haematoma following traumatic head injury. Ir Med J. 2009;102(8):255–7.

    PubMed  CAS  Google Scholar 

  80. Haselkorn ML, Shellington DK, Jackson EK, Vagni VA, Janesko-Feldman K, Dubey RK, et al. Adenosine A1 receptor activation as a brake on the microglial response after experimental traumatic brain injury in mice. J Neurotrauma. 2010;27(5):901–10.

    PubMed Central  PubMed  Google Scholar 

  81. Hemerka JN, Wu X, Dixon CE, Garman RH, Exo JL, Shellington DK, et al. Severe brief pressure-controlled hemorrhagic shock after traumatic brain injury exacerbates functional deficits and long-term neuropathological damage in mice. J Neurotrauma. 2012;29(12):2192–208.

    PubMed Central  PubMed  Google Scholar 

  82. Higgens LS, Unterharnscheidt F. Pathomorphology of experimental head injury due to rotational acceleration. Acta Neuropathol. 1969;12(2):200–4.

    PubMed  CAS  Google Scholar 

  83. Hong Y, Yan W, Chen S, Sun CR, Zhang JM. The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol Sin. 2010;31(11):1421–30.

    PubMed  CAS  Google Scholar 

  84. Horvat A, Schwaiger F, Hager G, Brocker F, Streif R, Knyazev P, et al. A novel role for protein tyrosine phosphatase shp1 in controlling glial activation in the normal and injured nervous system. J Neurosci. 2001;21(3):865–74.

    PubMed  CAS  Google Scholar 

  85. Huang WC, Kuo WC, Cherng JH, Hsu SH, Chen PR, Huang SH, et al. Chondroitinase ABC promotes axonal re-growth and behavior recovery in spinal cord injury. Biochem Biophys Res Commun. 2006;349(3):963–8.

    PubMed  CAS  Google Scholar 

  86. Hunt RF, Scheff SW, Smith BN. Posttraumatic epilepsy after controlled cortical impact injury in mice. Exp Neurol. 2009;215(2):243–52.

    PubMed  Google Scholar 

  87. Hylin MJ, Orsi SA, Rozas NS, Hill JL, Zhao J, Redell JB, et al. Repeated mild closed head injury impairs short-term visuospatial memory and complex learning. J Neurotrauma. 2013;30(9):716–26.

    PubMed  Google Scholar 

  88. Indraswari F, Wang H, Lei B, James ML, Kernagis D, Warner DS, et al. Statins improve outcome in murine models of intracranial hemorrhage and traumatic brain injury: a translational approach. J Neurotrauma. 2012;29(7):1388–400.

    PubMed  Google Scholar 

  89. Ishige N, Pitts LH, Berry I, Carlson SG, Nishimura MC, Moseley ME, et al. The effect of hypoxia on traumatic head injury in rats: alterations in neurologic function, brain edema, and cerebral blood flow. J Cereb Blood Flow Metab. 1987;7(6):759–67.

    PubMed  CAS  Google Scholar 

  90. James ML, Wang H, Venkatraman T, Song P, Lascola CD, Laskowitz DT. Brain natriuretic peptide improves long-term functional recovery after acute CNS injury in mice. J Neurotrauma. 2010;27(1):217–28.

    PubMed  Google Scholar 

  91. Jenkins LW, Moszynski K, Lyeth BG, Lewelt W, DeWitt DS, Allen A, et al. Increased vulnerability of the mildly traumatized rat brain to cerebral ischemia: the use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury. Brain Res. 1989;477(1–2):211–24.

    PubMed  CAS  Google Scholar 

  92. Jordan BD. Brain injury in boxing. Clin Sports Med. 2009;28(4):561–78. vi.

    PubMed  Google Scholar 

  93. Kabadi SV, Stoica BA, Loane DJ, Byrnes KR, Hanscom M, Cabatbat RM, et al. Cyclin D1 gene ablation confers neuroprotection in traumatic brain injury. J Neurotrauma. 2012;29(5):813–27.

    PubMed Central  PubMed  Google Scholar 

  94. Kamnaksh A, Kwon SK, Kovesdi E, Ahmed F, Barry ES, Grunberg NE, et al. Neurobehavioral, cellular, and molecular consequences of single and multiple mild blast exposure. Electrophoresis. 2012;33(24):3680–92.

    PubMed  CAS  Google Scholar 

  95. Kane MJ, ngoa-Perez M, Briggs DI, Viano DC, Kreipke CW, Kuhn DM. A mouse model of human repetitive mild traumatic brain injury. J Neurosci Methods. 2012;203(1):41–9.

    PubMed Central  PubMed  Google Scholar 

  96. Katada R, Nishitani Y, Honmou O, Mizuo K, Okazaki S, Tateda K, et al. Expression of aquaporin-4 augments cytotoxic brain edema after traumatic brain injury during acute ethanol exposure. Am J Pathol. 2012;180(1):17–23.

    PubMed  CAS  Google Scholar 

  97. Kataoka K, Asai T, Taneda M, Ueshima S, Matsuo O, Kuroda R, et al. Roles of urokinase type plasminogen activator in a brain stab wound. Brain Res. 2000;887(1):187–90.

    PubMed  CAS  Google Scholar 

  98. Kelso ML, Scheff SW, Pauly JR, Loftin CD. Effects of genetic deficiency of cyclooxygenase-1 or cyclooxygenase-2 on functional and histological outcomes following traumatic brain injury in mice. BMC Neurosci. 2009;10:108.

    PubMed Central  PubMed  Google Scholar 

  99. Kharatishvili I, Pitkanen A. Posttraumatic epilepsy. Curr Opin Neurol. 2010;23(2):183–8.

    PubMed  Google Scholar 

  100. Kilbourne M, Kuehn R, Tosun C, Caridi J, Keledjian K, Bochicchio G, et al. Novel model of frontal impact closed head injury in the rat. J Neurotrauma. 2009;26(12):2233–43.

    PubMed Central  PubMed  Google Scholar 

  101. Kim JY, Kim N, Zheng Z, Lee JE, Yenari MA. The 70 kDa heat shock protein protects against experimental traumatic brain injury. Neurobiol Dis. 2013;58:289–95.

    PubMed  CAS  Google Scholar 

  102. Kimbler DE, Shields J, Yanasak N, Vender JR, Dhandapani KM. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS One. 2012;7(7):e41229.

    PubMed Central  PubMed  CAS  Google Scholar 

  103. Kipnis J, Nevo U, Panikashvili D, Alexandrovich A, Yoles E, Akselrod S, et al. Therapeutic vaccination for closed head injury. J Neurotrauma. 2003;20(6):559–69.

    PubMed  Google Scholar 

  104. Kochanek PM, Vagni VA, Janesko KL, Washington CB, Crumrine PK, Garman RH, et al. Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab. 2006;26(4):565–75.

    PubMed  CAS  Google Scholar 

  105. Koliatsos VE, Cernak I, Xu L, Song Y, Savonenko A, Crain BJ, et al. A mouse model of blast injury to brain: initial pathological, neuropathological, and behavioral characterization. J Neuropathol Exp Neurol. 2011;70(5):399–416.

    PubMed  Google Scholar 

  106. Kotapka MJ, Gennarelli TA, Graham DI, Adams JH, Thibault LE, Ross DT, et al. Selective vulnerability of hippocampal neurons in acceleration-induced experimental head injury. J Neurotrauma. 1991;8(4):247–58.

    PubMed  CAS  Google Scholar 

  107. Krajewska M, You Z, Rong J, Kress C, Huang X, Yang J, et al. Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity. PLoS One. 2011;6(9):e24341.

    PubMed Central  PubMed  CAS  Google Scholar 

  108. Kuehn R, Simard PF, Driscoll I, Keledjian K, Ivanova S, Tosun C, et al. Rodent model of direct cranial blast injury. J Neurotrauma. 2011;28(10):2155–69.

    PubMed  Google Scholar 

  109. Lammie GA, Piper IR, Thomson D, Brannan F. Neuropathologic characterization of a rodent model of closed head injury–addition of clinically relevant secondary insults does not significantly potentiate brain damage. J Neurotrauma. 1999;16(7):603–15.

    PubMed  CAS  Google Scholar 

  110. Learoyd AE, Lifshitz J. Comparison of rat sensory behavioral tasks to detect somatosensory morbidity after diffuse brain-injury. Behav Brain Res. 2012;226(1):197–204.

    PubMed Central  PubMed  Google Scholar 

  111. Leinhase I, Rozanski M, Harhausen D, Thurman JM, Schmidt OI, Hossini AM, et al. Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice. J Neuroinflammation. 2007;4:13.

    PubMed Central  PubMed  Google Scholar 

  112. Leitgeb J, Mauritz W, Brazinova A, Janciak I, Majdan M, Wilbacher I, et al. Outcome after severe brain trauma due to acute subdural hematoma. J Neurosurg. 2012;117(2):324–33.

    PubMed  Google Scholar 

  113. Leitgeb J, Mauritz W, Brazinova A, Majdan M, Wilbacher I. Outcome after severe brain trauma associated with epidural hematoma. Arch Orthop Trauma Surg. 2013;133(2):199–207.

    PubMed  Google Scholar 

  114. Levin HS, Robertson CS. Mild traumatic brain injury in translation. J Neurotrauma. 2013;30(8):610–7.

    PubMed Central  PubMed  Google Scholar 

  115. Lew HL, Poole JH, Alvarez S, Moore W. Soldiers with occult traumatic brain injury. Am J Phys Med Rehabil. 2005;84(6):393–8.

    PubMed  Google Scholar 

  116. Ley EJ, Clond MA, Bukur M, Park R, Chervonski M, Dagliyan G, et al. beta-adrenergic receptor inhibition affects cerebral glucose metabolism, motor performance, and inflammatory response after traumatic brain injury. J Trauma Acute Care Surg. 2012;73(1):33–40.

    PubMed  CAS  Google Scholar 

  117. Ley EJ, Clond MA, Singer MB, Shouhed D, Salim A. IL6 deficiency affects function after traumatic brain injury. J Surg Res. 2011;170(2):253–6.

    PubMed  CAS  Google Scholar 

  118. Ley EJ, Scehnet J, Park R, Schroff S, Dagliyan G, Conti PS, et al. The in vivo effect of propranolol on cerebral perfusion and hypoxia after traumatic brain injury. J Trauma. 2009;66(1):154–9.

    PubMed  CAS  Google Scholar 

  119. Lifshitz J, Witgen BM, Grady MS. Acute cognitive impairment after lateral fluid percussion brain injury recovers by 1 month: evaluation by conditioned fear response. Behav Brain Res. 2007;177(2):347–57.

    PubMed Central  PubMed  Google Scholar 

  120. Lighthall JW, Dixon CE, Anderson TE. Experimental models of brain injury. J Neurotrauma. 1989;6(2):83–97.

    PubMed  CAS  Google Scholar 

  121. Liu NK, Zhang YP, O’Connor J, Gianaris A, Oakes E, Lu QB, et al. A bilateral head injury that shows graded brain damage and behavioral deficits in adult mice. Brain Res. 2013;1499:121–8.

    PubMed  CAS  Google Scholar 

  122. Long JB, Bentley TL, Wessner KA, Cerone C, Sweeney S, Bauman RA. Blast overpressure in rats: recreating a battlefield injury in the laboratory. J Neurotrauma. 2009;26(6):827–40.

    PubMed  Google Scholar 

  123. Longhi L, Ortolano F, Zanier ER, Perego C, Stocchetti N, De Simoni MG. Effect of traumatic brain injury on cognitive function in mice lacking p55 and p75 tumor necrosis factor receptors. Acta Neurochir Suppl. 2008;102:409–13.

    PubMed  CAS  Google Scholar 

  124. Longhi L, Perego C, Ortolano F, Aresi S, Fumagalli S, Zanier ER, et al. Tumor necrosis factor in traumatic brain injury: effects of genetic deletion of p55 or p75 receptor. J Cereb Blood Flow Metab. 2013;33(8):1182–9.

    PubMed  CAS  Google Scholar 

  125. Longhi L, Saatman KE, Fujimoto S, Raghupathi R, Meaney DF, Davis J, et al. Temporal window of vulnerability to repetitive experimental concussive brain injury. Neurosurgery. 2005;56(2):364–74.

    PubMed  Google Scholar 

  126. Longhi L, Saatman KE, Raghupathi R, Laurer HL, Lenzlinger PM, Riess P, et al. A review and rationale for the use of genetically engineered animals in the study of traumatic brain injury. J Cereb Blood Flow Metab. 2001;21(11):1241–58.

    PubMed  CAS  Google Scholar 

  127. Longhi L, Watson DJ, Saatman KE, Thompson HJ, Zhang C, Fujimoto S, et al. Ex vivo gene therapy using targeted engraftment of NGF-expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice. J Neurotrauma. 2004;21(12):1723–36.

    PubMed  Google Scholar 

  128. Maier EY, Ma ST, Ahrens A, Schallert TJ, Duvauchelle CL. Assessment of ultrasonic vocalizations during drug self-administration in rats. J Vis Exp. 2010;(41):2014.

  129. Mannix RC, Zhang J, Park J, Lee C, Whalen MJ. Detrimental effect of genetic inhibition of B-site APP-cleaving enzyme 1 on functional outcome after controlled cortical impact in young adult mice. J Neurotrauma. 2011;28(9):1855–61.

    PubMed Central  PubMed  Google Scholar 

  130. Manvelyan H. Contemporary experimental models of traumatic brain injury. Georgian Med News. 2006;140:13–6.

    PubMed  Google Scholar 

  131. Marciano D, Shohami E, Kloog Y, Alexandrovitch A, Brandeis R, Goelman G. Neuroprotective effects of the Ras inhibitor S-trans-trans-farnesylthiosalicylic acid, measured by diffusion-weighted imaging after traumatic brain injury in rats. J Neurotrauma. 2007;24(8):1378–86.

    PubMed  Google Scholar 

  132. Margulies SS, Thibault LE, Gennarelli TA. Physical model simulations of brain injury in the primate. J Biomech. 1990;23(8):823–36.

    PubMed  CAS  Google Scholar 

  133. Marklund N, Hillered L. Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol. 2011;164(4):1207–29.

    PubMed Central  PubMed  CAS  Google Scholar 

  134. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg. 1994;80(2):291–300.

    PubMed  CAS  Google Scholar 

  135. Mascia L. Acute lung injury in patients with severe brain injury: a double hit model. Neurocrit Care. 2009;11(3):417–26.

    PubMed  Google Scholar 

  136. Mathias JL, Beall JA, Bigler ED. Neuropsychological and information processing deficits following mild traumatic brain injury. J Int Neuropsychol Soc. 2004;10(2):286–97.

    PubMed  Google Scholar 

  137. Matsushita Y, Bramlett HM, Alonso O, Dietrich WD. Posttraumatic hypothermia is neuroprotective in a model of traumatic brain injury complicated by a secondary hypoxic insult. Crit Care Med. 2001;29(11):2060–6.

    PubMed  CAS  Google Scholar 

  138. Mayer SA, Badjatia N. Head injury. In: Rowland LP, Pedley TA, editors. Merritt’s neurology. Philadelphia: Wolters Kluwer Lippincott Williams & Wilkins; 2010. p. 479–94.

    Google Scholar 

  139. Mayoral SR, Omar G, Penn AA. Sex differences in a hypoxia model of preterm brain damage. Pediatr Res. 2009;66(3):248–53.

    PubMed Central  PubMed  Google Scholar 

  140. Mbye LH, Singh IN, Carrico KM, Saatman KE, Hall ED. Comparative neuroprotective effects of cyclosporin A and NIM811, a nonimmunosuppressive cyclosporin A analog, following traumatic brain injury. J Cereb Blood Flow Metab. 2009;29(1):87–97.

    PubMed Central  PubMed  CAS  Google Scholar 

  141. McBeth BD, Stern SA, Wang X, Mertz M, Zink BJ. Effects of cocaine in an experimental model of traumatic brain injury. Acad Emerg Med. 2005;12(6):483–90.

    PubMed  Google Scholar 

  142. McCrory P, Davis G, Makdissi M. Second impact syndrome or cerebral swelling after sporting head injury. Curr Sports Med Rep. 2012;11(1):21–3.

    PubMed  Google Scholar 

  143. McKee AC, Stein TD, Nowinski CJ, Stern RA, Daneshvar DH, Alvarez VE, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136(Pt 1):43–64.

    PubMed Central  PubMed  Google Scholar 

  144. McNamara KC, Lisembee AM, Lifshitz J. The whisker nuisance task identifies a late-onset, persistent sensory sensitivity in diffuse brain-injured rats. J Neurotrauma. 2010;27(4):695–706.

    PubMed Central  PubMed  Google Scholar 

  145. Meehan III WP, Zhang J, Mannix R, Whalen MJ. Increasing recovery time between injuries improves cognitive outcome after repetitive mild concussive brain injuries in mice. Neurosurgery. 2012;71(4):885–91.

    PubMed  Google Scholar 

  146. Mikrogianakis A, Shaye RE, Griffin P, Kawesa S, Lockwood J, Gendron NH, et al. Hypoxia alters the expression of inhibitor of apoptosis proteins after brain trauma in the mouse. J Neurotrauma. 2007;24(2):338–53.

    PubMed  Google Scholar 

  147. Miller G. Neuropathology. Blast injuries linked to neurodegeneration in veterans. Science. 2012;336(6083):790–1.

    PubMed  CAS  Google Scholar 

  148. Milman A, Rosenberg A, Weizman R, Pick CG. Mild traumatic brain injury induces persistent cognitive deficits and behavioral disturbances in mice. J Neurotrauma. 2005;22(9):1003–10.

    PubMed  CAS  Google Scholar 

  149. Milman A, Zohar O, Maayan R, Weizman R, Pick CG. DHEAS repeated treatment improves cognitive and behavioral deficits after mild traumatic brain injury. Eur Neuropsychopharmacol. 2008;18(3):181–7.

    PubMed  CAS  Google Scholar 

  150. Mirzayan MJ, Probst C, Samii M, Krettek C, Gharabaghi A, Pape HC, et al. Histopathological features of the brain, liver, kidney and spleen following an innovative polytrauma model of the mouse. Exp Toxicol Pathol. 2012;64(3):133–9.

    PubMed  CAS  Google Scholar 

  151. Mountney A, Leung LY, Pedersen R, Shear D, Tortella F. Longitudinal assessment of gait abnormalities following penetrating ballistic-like brain injury in rats. J Neurosci Methods. 2012;212(1):1–16.

    PubMed  Google Scholar 

  152. Nadler Y, Alexandrovich A, Grigoriadis N, Hartmann T, Rao KS, Shohami E, et al. Increased expression of the gamma-secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury. Glia. 2008;56(5):552–67.

    PubMed  Google Scholar 

  153. Nakagawa A, Manley GT, Gean AD, Ohtani K, Armonda R, Tsukamoto A, et al. Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research. J Neurotrauma. 2011;28(6):1101–19.

    PubMed  Google Scholar 

  154. Neumann M, Wang Y, Kim S, Hong SM, Jeng L, Bilgen M, et al. Assessing gait impairment following experimental traumatic brain injury in mice. J Neurosci Methods. 2009;176(1):34–44.

    PubMed Central  PubMed  Google Scholar 

  155. Ning YL, Yang N, Chen X, Xiong RP, Zhang XZ, Li P, et al. Adenosine A2A receptor deficiency alleviates blast-induced cognitive dysfunction. J Cereb Blood Flow Metab. 2013;33(11):1789–98.

    PubMed  CAS  Google Scholar 

  156. Oliva Jr AA, Kang Y, Sanchez-Molano J, Furones C, Atkins CM. STAT3 signaling after traumatic brain injury. J Neurochem. 2012;120(5):710–20.

    PubMed  CAS  Google Scholar 

  157. Ommaya AK, Corrao P, Letcher FS. Head injury in the chimpanzee. 1. Biodynamics of traumatic unconsciousness. J Neurosurg. 1973;39(2):152–66.

    PubMed  CAS  Google Scholar 

  158. Ommaya AK, Goldsmith W, Thibault L. Biomechanics and neuropathology of adult and paediatric head injury. Br J Neurosurg. 2002;16(3):220–42.

    PubMed  CAS  Google Scholar 

  159. Oron A, Oron U, Streeter J, de Taboada L, Alexandrovich A, Trembovler V, et al. Low-level laser therapy applied transcranially to mice following traumatic brain injury significantly reduces long-term neurological deficits. J Neurotrauma. 2007;24(4):651–6.

    PubMed  Google Scholar 

  160. Paiva WS, Soares MS, Amorim RL, de Andrade AF, Matushita H, Teixeira MJ. Traumatic brain injury and shaken baby syndrome. Acta Med Port. 2011;24(5):805–8.

    PubMed  Google Scholar 

  161. Parkinson D. Evaluating cerebral concussion. Surg Neurol. 1996;45(5):459–62.

    PubMed  CAS  Google Scholar 

  162. Peters M, Trembovler V, Alexandrovich A, Parnas M, Birnbaumer L, Minke B, et al. Carvacrol together with TRPC1 elimination improve functional recovery after traumatic brain injury in mice. J Neurotrauma. 2012;29(18):2831–4.

    PubMed Central  PubMed  Google Scholar 

  163. Petraglia AL, Marky AH, Walker C, Thiyagarajan M, Zlokovic BV. Activated protein C is neuroprotective and mediates new blood vessel formation and neurogenesis after controlled cortical impact. Neurosurgery. 2010;66(1):165–71.

    PubMed Central  PubMed  Google Scholar 

  164. Pinna G. In a mouse model relevant for post-traumatic stress disorder, selective brain steroidogenic stimulants (SBSS) improve behavioral deficits by normalizing allopregnanolone biosynthesis. Behav Pharmacol. 2010;21(5–6):438–50.

    PubMed Central  PubMed  CAS  Google Scholar 

  165. Plantman S, Ng KC, Lu J, Davidsson J, Risling M. Characterization of a novel rat model of penetrating traumatic brain injury. J Neurotrauma. 2012;29(6):1219–32.

    PubMed  Google Scholar 

  166. Pleasant JM, Carlson SW, Mao H, Scheff SW, Yang KH, Saatman KE. Rate of neurodegeneration in the mouse controlled cortical impact model is influenced by impactor tip shape: implications for mechanistic and therapeutic studies. J Neurotrauma. 2011;28(11):2245–62.

    PubMed Central  PubMed  Google Scholar 

  167. Povlishock JT. The window of risk in repeated head injury. J Neurotrauma. 2013;30(1):1.

    PubMed  Google Scholar 

  168. Prins ML, Alexander D, Giza CC, Hovda DA. Repeated mild traumatic brain injury: mechanisms of cerebral vulnerability. J Neurotrauma. 2013;30(1):30–8.

    PubMed Central  PubMed  Google Scholar 

  169. Probst C, Mirzayan MJ, Mommsen P, Zeckey C, Tegeder T, Geerken L, et al. Systemic inflammatory effects of traumatic brain injury, femur fracture, and shock: an experimental murine polytrauma model. Mediat Inflamm. 2012;2012:136020.

    CAS  Google Scholar 

  170. Pun PB, Kan EM, Salim A, Li Z, Ng KC, Moochhala SM, et al. Low level primary blast injury in rodent brain. Front Neurol. 2011;2:19.

    PubMed Central  PubMed  CAS  Google Scholar 

  171. Reneer DV, Hisel RD, Hoffman JM, Kryscio RJ, Lusk BT, Geddes JW. A multi-mode shock tube for investigation of blast-induced traumatic brain injury. J Neurotrauma. 2011;28(1):95–104.

    PubMed Central  PubMed  Google Scholar 

  172. Reshef A, Shirvan A, Shohami E, Grimberg H, Levin G, Cohen A, et al. Targeting cell death in vivo in experimental traumatic brain injury by a novel molecular probe. J Neurotrauma. 2008;25(6):569–80.

    PubMed  Google Scholar 

  173. Risling M, Plantman S, Angeria M, Rostami E, Bellander BM, Kirkegaard M, et al. Mechanisms of blast induced brain injuries, experimental studies in rats. Neuroimage. 2011;54 Suppl 1:S89–97.

    PubMed  Google Scholar 

  174. Rostami E, Davidsson J, Ng KC, Lu J, Gyorgy A, Walker J, et al. A model for mild traumatic brain injury that induces limited transient memory impairment and increased levels of axon related serum biomarkers. Front Neurol. 2012;3:115.

    PubMed Central  PubMed  CAS  Google Scholar 

  175. Rubovitch V, Ten-Bosch M, Zohar O, Harrison CR, Tempel-Brami C, Stein E, et al. A mouse model of blast-induced mild traumatic brain injury. Exp Neurol. 2011;232(2):280–9.

    PubMed Central  PubMed  Google Scholar 

  176. Ryan CG, Thompson RE, Temkin NR, Crane PK, Ellenbogen RG, Elmore JG. Acute traumatic subdural hematoma: current mortality and functional outcomes in adult patients at a Level I trauma center. J Trauma Acute Care Surg. 2012;73(5):1348–54.

    PubMed Central  PubMed  Google Scholar 

  177. Saatman KE, Feeko KJ, Pape RL, Raghupathi R. Differential behavioral and histopathological responses to graded cortical impact injury in mice. J Neurotrauma. 2006;23(8):1241–53.

    PubMed  Google Scholar 

  178. Salehi-Had H, Brandt JD, Rosas AJ, Rogers KK. Findings in older children with abusive head injury: does shaken-child syndrome exist? Pediatrics. 2006;117(5):e1039–44.

    PubMed  Google Scholar 

  179. Sasaki M, Dunn L. A model of acute subdural hematoma in the mouse. J Neurotrauma. 2001;18(11):1241–6.

    PubMed  CAS  Google Scholar 

  180. Sawauchi S, Marmarou A, Beaumont A, Signoretti S, Fukui S. Acute subdural hematoma associated with diffuse brain injury and hypoxemia in the rat: effect of surgical evacuation of the hematoma. J Neurotrauma. 2004;21(5):563–73.

    PubMed  Google Scholar 

  181. Schumann J, Alexandrovich GA, Biegon A, Yaka R. Inhibition of NR2B phosphorylation restores alterations in NMDA receptor expression and improves functional recovery following traumatic brain injury in mice. J Neurotrauma. 2008;25(8):945–57.

    PubMed Central  PubMed  Google Scholar 

  182. Schwarzbold ML, Rial D, De BT, Machado DG, Cunha MP, dos Santos AA, et al. Effects of traumatic brain injury of different severities on emotional, cognitive, and oxidative stress-related parameters in mice. J Neurotrauma. 2010;27(10):1883–93.

    PubMed  Google Scholar 

  183. Serbanescu I, Brown SM, Ramsay D, Levin AV. Natural animal shaking: a model for non-accidental head injury in children? Eye (Lond). 2008;22(5):715–7.

    CAS  Google Scholar 

  184. Shellington DK, Du L, Wu X, Exo J, Vagni V, Ma L, et al. Polynitroxylated pegylated hemoglobin: a novel neuroprotective hemoglobin for acute volume-limited fluid resuscitation after combined traumatic brain injury and hemorrhagic hypotension in mice. Crit Care Med. 2011;39(3):494–505.

    PubMed Central  PubMed  CAS  Google Scholar 

  185. Shih AY, Mateo C, Drew PJ, Tsai PS, Kleinfeld D. A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. J Vis Exp. 2012;(61).

  186. Shitaka Y, Tran HT, Bennett RE, Sanchez L, Levy MA, Dikranian K, et al. Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J Neuropathol Exp Neurol. 2011;70(7):551–67.

    PubMed Central  PubMed  Google Scholar 

  187. Shohami E, Yatsiv I, Alexandrovich A, Haklai R, Elad-Sfadia G, Grossman R, et al. The Ras inhibitor S-trans, trans-farnesylthiosalicylic acid exerts long-lasting neuroprotection in a mouse closed head injury model. J Cereb Blood Flow Metab. 2003;23(6):728–38.

    PubMed  CAS  Google Scholar 

  188. Shultz SR, Bao F, Omana V, Chiu C, Brown A, Cain DP. Repeated mild lateral fluid percussion brain injury in the rat causes cumulative long-term behavioral impairments, neuroinflammation, and cortical loss in an animal model of repeated concussion. J Neurotrauma. 2012;29(2):281–94.

    PubMed  Google Scholar 

  189. Smith DH, Soares HD, Pierce JS, Perlman KG, Saatman KE, Meaney DF, et al. A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J Neurotrauma. 1995;12(2):169–78.

    PubMed  CAS  Google Scholar 

  190. Spain A, Daumas S, Lifshitz J, Rhodes J, Andrews PJ, Horsburgh K, et al. Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury. J Neurotrauma. 2010;27(8):1429–38.

    PubMed  Google Scholar 

  191. Squier W. The “shaken baby” syndrome: pathology and mechanisms. Acta Neuropathol. 2011;122(5):519–42.

    PubMed  Google Scholar 

  192. Stiefel MF, Tomita Y, Marmarou A. Secondary ischemia impairing the restoration of ion homeostasis following traumatic brain injury. J Neurosurg. 2005;103(4):707–14.

    PubMed  Google Scholar 

  193. Strauss KI, Gruzdev A, Zeldin DC. Altered behavioral phenotypes in soluble epoxide hydrolase knockout mice: effects of traumatic brain injury. Prostaglandins Lipid Mediat. 2013;104–105:18–24.

    Google Scholar 

  194. Sundaramurthy A, Alai A, Ganpule S, Holmberg A, Plougonven E, Chandra N. Blast-induced biomechanical loading of the rat: an experimental and anatomically accurate computational blast injury model. J Neurotrauma. 2012;29(13):2352–64.

    PubMed  Google Scholar 

  195. Sword J, Masuda T, Croom D, Kirov SA. Evolution of neuronal and astroglial disruption in the peri-contusional cortex of mice revealed by in vivo two-photon imaging. Brain. 2013;136(Pt 5):1446–61.

    PubMed Central  PubMed  Google Scholar 

  196. Taber KH, Warden DL, Hurley RA. Blast-related traumatic brain injury: what is known? J Neuropsychiatry Clin Neurosci. 2006;18(2):141–5.

    PubMed  Google Scholar 

  197. Tanaka Y, Matsuwaki T, Yamanouchi K, Nishihara M. Exacerbated inflammatory responses related to activated microglia after traumatic brain injury in progranulin-deficient mice. Neuroscience. 2013;231:49–60.

    PubMed  CAS  Google Scholar 

  198. Taussky P, Widmer HR, Takala J, Fandino J. Outcome after acute traumatic subdural and epidural haematoma in Switzerland: a single-centre experience. Swiss Med Wkly. 2008;138(19–20):281–5.

    PubMed  Google Scholar 

  199. Theriault M, De BL, Tremblay S, Lassonde M, Jolicoeur P. Cumulative effects of concussions in athletes revealed by electrophysiological abnormalities on visual working memory. J Clin Exp Neuropsychol. 2011;33(1):30–41.

    PubMed  Google Scholar 

  200. Theus MH, Ricard J, Bethea JR, Liebl DJ. EphB3 limits the expansion of neural progenitor cells in the subventricular zone by regulating p53 during homeostasis and following traumatic brain injury. Stem Cells. 2010;28(7):1231–42.

    PubMed Central  PubMed  CAS  Google Scholar 

  201. Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE. Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil. 1999;14(6):602–15.

    PubMed  CAS  Google Scholar 

  202. Tian DS, Yu ZY, Xie MJ, Bu BT, Witte OW, Wang W. Suppression of astroglial scar formation and enhanced axonal regeneration associated with functional recovery in a spinal cord injury rat model by the cell cycle inhibitor olomoucine. J Neurosci Res. 2006;84(5):1053–63.

    PubMed  CAS  Google Scholar 

  203. Tomasevic G, Laurer HL, Mattiasson G, van Steeg H, Wieloch T, McIntosh TK. Delayed neuromotor recovery and increased memory acquisition dysfunction following experimental brain trauma in mice lacking the DNA repair gene XPA. J Neurosurg. 2012;116(6):1368–78.

    PubMed  Google Scholar 

  204. Trabold R, Eros C, Zweckberger K, Relton J, Beck H, Nussberger J, et al. The role of bradykinin B(1) and B(2) receptors for secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab. 2010;30(1):130–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  205. Tsenter J, Beni-Adani L, Assaf Y, Alexandrovich AG, Trembovler V, Shohami E. Dynamic changes in the recovery after traumatic brain injury in mice: effect of injury severity on T2-weighted MRI abnormalities, and motor and cognitive functions. J Neurotrauma. 2008;25(4):324–33.

    PubMed  Google Scholar 

  206. Valiyaveettil M, Alamneh Y, Wang Y, Arun P, Oguntayo S, Wei Y, et al. Contribution of systemic factors in the pathophysiology of repeated blast-induced neurotrauma. Neurosci Lett. 2013;539:1–6.

    PubMed  CAS  Google Scholar 

  207. Viano DC, Hamberger A, Bolouri H, Saljo A. Concussion in professional football: animal model of brain injury—part 15. Neurosurgery. 2009;64(6):1162–73.

    PubMed  Google Scholar 

  208. Vinogradov AE. Human more complex than mouse at cellular level. PLoS One. 2012;7(7):e41753.

    PubMed Central  PubMed  CAS  Google Scholar 

  209. von Baumgarten L, Trabold R, Thal S, Back T, Plesnila N. Role of cortical spreading depressions for secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab. 2008;28(7):1353–60.

    Google Scholar 

  210. Walker KR, Kang EL, Whalen MJ, Shen Y, Tesco G. Depletion of GGA1 and GGA3 mediates postinjury elevation of BACE1. J Neurosci. 2012;32(30):10423–37.

    PubMed Central  PubMed  CAS  Google Scholar 

  211. Wang HC, Duan ZX, Wu FF, Xie L, Zhang H, Ma YB. A new rat model for diffuse axonal injury using a combination of linear acceleration and angular acceleration. J Neurotrauma. 2010;27(4):707–19.

    PubMed  Google Scholar 

  212. Wang Y, Arun P, Wei Y, Oguntayo S, Gharavi RB, Valiyaveettil M, et al. Repeated Blast Exposures cause DNA Fragmentation in Mice. J Neurotrauma. 2014; (in press)

  213. Wang Y, Wei Y, Oguntayo S, Wilkins W, Arun P, Valiyaveettil M, et al. Tightly coupled repetitive blast-induced traumatic brain injury: development and characterization in mice. J Neurotrauma. 2011;28(10):2171–83.

    PubMed  Google Scholar 

  214. Warden D. Military TBI, during the Iraq and Afghanistan wars. J Head Trauma Rehabil. 2006;21(5):398–402.

    PubMed  Google Scholar 

  215. Wei HH, Lu XC, Shear DA, Waghray A, Yao C, Tortella FC, et al. NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating ballistic-like brain injury in rats. J Neuroinflammation. 2009;6:19.

    PubMed Central  PubMed  Google Scholar 

  216. Williams AJ, Hartings JA, Lu XC, Rolli ML, Tortella FC. Penetrating ballistic-like brain injury in the rat: differential time courses of hemorrhage, cell death, inflammation, and remote degeneration. J Neurotrauma. 2006;23(12):1828–46.

    PubMed  Google Scholar 

  217. Williams AJ, Ling GS, Tortella FC. Severity level and injury track determine outcome following a penetrating ballistic-like brain injury in the rat. Neurosci Lett. 2006;408(3):183–8.

    PubMed  CAS  Google Scholar 

  218. Williams AJ, Wei HH, Dave JR, Tortella FC. Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat. J Neuroinflammation. 2007;4:17.

    PubMed Central  PubMed  Google Scholar 

  219. Yoneyama-Sarnecky T, Olivas AD, Azari S, Ferriero DM, Manvelyan HM, Noble-Haeusslein LJ. Heme oxygenase-2 modulates early pathogenesis after traumatic injury to the immature brain. Dev Neurosci. 2010;32(1):81–90.

    PubMed Central  PubMed  CAS  Google Scholar 

  220. Yoshiyama Y, Uryu K, Higuchi M, Longhi L, Hoover R, Fujimoto S, et al. Enhanced neurofibrillary tangle formation, cerebral atrophy, and cognitive deficits induced by repetitive mild brain injury in a transgenic tauopathy mouse model. J Neurotrauma. 2005;22(10):1134–41.

    PubMed  Google Scholar 

  221. Yu S, Kaneko Y, Bae E, Stahl CE, Wang Y, van Loveren H, et al. Severity of controlled cortical impact traumatic brain injury in rats and mice dictates degree of behavioral deficits. Brain Res. 2009;1287:157–63.

    PubMed  CAS  Google Scholar 

  222. Zaltzman R, Beni SM, Giladi E, Pinhasov A, Steingart RA, Romano J, et al. Injections of the neuroprotective peptide NAP to newborn mice attenuate head-injury-related dysfunction in adults. Neuroreport. 2003;14(3):481–4.

    PubMed  CAS  Google Scholar 

  223. Zhao Z, Loane DJ, Murray MG, Stoica BA, Faden AI. Comparing the predictive value of multiple cognitive, affective, and motor tasks after rodent traumatic brain injury. J Neurotrauma. 2012;29(15):2475–89.

    PubMed Central  PubMed  Google Scholar 

  224. Zink BJ, Stern SA, McBeth BD, Wang X, Mertz M. Effects of ethanol on limited resuscitation in a model of traumatic brain injury and hemorrhagic shock. J Neurosurg. 2006;105(6):884–93.

    PubMed  CAS  Google Scholar 

  225. Zohar O, Rubovitch V, Milman A, Schreiber S, Pick CG. Behavioral consequences of minimal traumatic brain injury in mice. Acta Neurobiol Exp (Wars). 2011;71(1):36–45.

    Google Scholar 

  226. Zomkowski AD, Hammes L, Lin J, Calixto JB, Santos AR, Rodrigues AL. Agmatine produces antidepressant-like effects in two models of depression in mice. Neuroreport. 2002;13(4):387–91.

    PubMed  CAS  Google Scholar 

  227. Zweckberger K, Eros C, Zimmermann R, Kim SW, Engel D, Plesnila N. Effect of early and delayed decompressive craniectomy on secondary brain damage after controlled cortical impact in mice. J Neurotrauma. 2006;23(7):1083–93.

    PubMed  Google Scholar 

  228. Zweckberger K, Stoffel M, Baethmann A, Plesnila N. Effect of decompression craniotomy on increase of contusion volume and functional outcome after controlled cortical impact in mice. J Neurotrauma. 2003;20(12):1307–14.

    PubMed  Google Scholar 

Download references

Conflict of Interest

Yi Ping Zhang declares that he has no conflict of interest. Jun Cai declares that he has no conflict of interest. Lisa B.E. Shields declares that she has no conflict of interest. Naikui Liu declares that he has no conflict of interest. Xiao-Ming Xu declares that he has no conflict of interest. Christopher B. Shields declares that he has ownership in the Louisville Impactor System, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher B. Shields.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y.P., Cai, J., Shields, L.B.E. et al. Traumatic Brain Injury Using Mouse Models. Transl. Stroke Res. 5, 454–471 (2014). https://doi.org/10.1007/s12975-014-0327-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-014-0327-0

Keywords

Navigation