Skip to main content

Advertisement

Log in

Role of Cell Cycle Re-Entry in Neurons: A Common Apoptotic Mechanism of Neuronal Cell Death

  • Review
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Currently, there is no effective treatment for neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. Thus, a major focus of neuroscience research is to examine the mechanisms involved in neuronal loss in order to identify potential drug targets. Recent results indicate that DNA damage and re-entry into the cell cycle may constitute a common pathway in apoptosis in neurological diseases. The role of the cell cycle in such disorders is supported by data on the brain of patients who showed an increase in cell-cycle protein expression. Indeed, studies performed in neuronal cell preparations indicate that oxidative stress could be the main mechanism responsible for cell cycle re-entry. DNA damage and repair after oxidative stress may activate the enzyme ataxia telangiectasia mutated, which is a cell-cycle regulator. Once the cell cycle is activated, the increase in the expression of transcription factor E2F-1 could induce neuronal apoptosis. Furthermore, the potential routes involved in E2F-1 induced apoptosis could be p53-dependent or p53-independent. Under this E2F-1 hypothesis of cell death, multiple mitochondria-dependent pathways may be activated, including caspase and caspase-independent signaling cascades. Finally, given that cyclin-dependent kinase inhibitory drugs have neuroprotective and anti-apoptotic effects in experimental models, their potential application for the treatment of neurological disorders should be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akashiba H, Matsuki N, Nishiyama N (2006) p27 small interfering RNA induces cell death through elevating cell cycle activity in cultured cortical neurons: a proof-of-concept study. Cell Mol Life Sci 63:2397–2404

    PubMed  CAS  Google Scholar 

  • Akashiba H, Ikegaya Y, Nishiyama N, Matsuki N (2008) Differential involvement of cell cycle reactivation between striatal and cortical neurons in cell death induced by 3-nitropropionic acid. J Biol Chem 283:6594–6606

    PubMed  CAS  Google Scholar 

  • Alvira D, Tajes M, Verdaguer E, de Arriba SG, Allgaier C, Matute C, Trullas R, Jiménez A, Pallàs M, Camins A (2007) Inhibition of cyclin-dependent kinases is neuroprotective in 1-methyl-4-phenylpyridinium-induced apoptosis in neurons. Neuroscience 146:350–365

    PubMed  CAS  Google Scholar 

  • Alvira D, Ferrer I, Gutierrez-Cuesta J, Garcia-Castro B, Pallàs M, Camins A (2008) Activation of the calpain/cdk5/p25 pathway in the girus cinguli in Parkinson’s disease. Parkinsonism Relat Disord 14:309–313

    PubMed  Google Scholar 

  • Appert-Collin A, Hugel B, Levy R, Niederhoffer N, Coupin G, Lombard Y, André P, Poindron P, Gies JP (2006) Cyclin dependent kinase inhibitors prevent apoptosis of postmitotic mouse motoneurons. Life Sci 79:484–490

    PubMed  CAS  Google Scholar 

  • Arendt T (2009) Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 118:167–179

    PubMed  Google Scholar 

  • Arendt T, Rödel L, Gärtner U, Holzer M (1996) Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer’s disease. Neuroreport 7:3047–3049

    PubMed  CAS  Google Scholar 

  • Arendt T, Holzer M, Gärtner U (1998) Neuronal expression of cycline dependent kinase inhibitors of the INK4 family in Alzheimer’s disease. J Neural Transm 105:949–960

    PubMed  CAS  Google Scholar 

  • Atabay KD, Karabay A. Pin1 inhibition activates cyclin D and produces neurodegenerative pathology. J Neurochem. 2011 Mar 28. doi: 10.1111/j.1471-4159.2011.07259.x. [Epub ahead of print]

  • Barbato C, Corbi N, Canu N, Fanciulli M, Serafino A, Ciotti M, Libri V, Bruno T, Amadoro G, De Angelis R, Calissano P, Passananti C (2003) Rb binding protein Che-1 interacts with Tau in cerebellar granule neurons. Modulation during neuronal apoptosis. Mol Cell Neurosci 24:1038–1050

    PubMed  CAS  Google Scholar 

  • Bashari D, Hacohen D, Ginsberg D (2011) JNK activation is regulated by E2F and promotes E2F1-induced apoptosis. Cell Signal 23:65–70

    PubMed  CAS  Google Scholar 

  • Baumann K, Mandelkow EM, Biernat J, Piwnica-Worms H, Mandelkow E (1993) Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett 336:417–424

    PubMed  CAS  Google Scholar 

  • Becker EB, Bonni A (2004) Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 72:1–25

    Google Scholar 

  • Biswas SC, Liu DX, Greene LA (2005) Bim is a direct target of a neuronal E2F-dependent apoptotic pathway. J Neurosci 25:8349–8358

    PubMed  CAS  Google Scholar 

  • Biton S, Barzilai A, Shiloh Y (2008) The neurological phenotype of ataxia-telangiectasia: solving a persistent puzzle. DNA Repair 7:1028–1038

    PubMed  CAS  Google Scholar 

  • Bonda DJ, Evans TA, Santocanale C, Llosá JC, Viña J, Bajic VP, Castellani RJ, Siedlak SL, Perry G, Smith MA, Lee HG (2009) Evidence for the progression through S-phase in the ectopic cell cycle re-entry of neurons in Alzheimer disease. Aging (Albany NY) 1:382–388

    CAS  Google Scholar 

  • Bonda DJ, Bajić VP, Spremo-Potparevic B, Casadesus G, Zhu X, Smith MA, Lee HG (2010) Cell cycle aberrations and neurodegeneration. Neuropathol Appl Neurobiol 36:157–163

    PubMed  CAS  Google Scholar 

  • Brouillet E, Condé F, Beal MF, Hantraye P (1999) Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 59:427–468

    PubMed  CAS  Google Scholar 

  • Brouillet E, Jacquard C, Bizat N, Blum D (2005) 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J Neurochem 95:1521–1540

    PubMed  CAS  Google Scholar 

  • Camins A, Verdaguer E, Folch J, Beas-Zarate C, Canudas AM, Pallàs M (2007) Inhibition of ataxia telangiectasia-p53–E2F-1 pathway in neurons as a target for the prevention of neuronal apoptosis. Curr Drug Metab 8:709–715

    PubMed  CAS  Google Scholar 

  • Camins A, Pizarro JG, Alvira D, Gutierrez-Cuesta J, de la Torre AV, Folch J, Sureda FX, Verdaguer E, Junyent F, Jordán J, Ferrer I, Pallàs M (2010) Activation of ataxia telangiectasia muted under experimental models and human Parkinson’s disease. Cell Mol Life Sci 67:3865–3882

    PubMed  CAS  Google Scholar 

  • Cernak I, Stoica B, Byrnes KR, Di Giovanni S, Faden AI (2005) Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 4:1286–1293

    PubMed  CAS  Google Scholar 

  • Chang KH, de Pablo Y, Lee HP, Lee HG, Smith MA, Shah K (2010) Cdk5 is a major regulator of p38 cascade: relevance to neurotoxicity in Alzheimer’s disease. J Neurochem 113:1221–1229

    PubMed  CAS  Google Scholar 

  • Chong ZZ, Li F, Maiese K (2005) Employing new cellular therapeutic targets for Alzheimer’s disease: a change for the better? Curr Neurovasc Res 2:55–72

    PubMed  CAS  Google Scholar 

  • Copani A, Condorelli F, Caruso A, Vancheri C, Sala A, Giuffrida Stella AM, Canonico PL, Nicoletti F, Sortino MA (1999) Mitotic signaling by beta-amyloid causes neuronal death. FASEB J 13:2225–2234

    PubMed  CAS  Google Scholar 

  • Copani A, Uberti D, Sortino MA, Bruno V, Nicoletti F, Memo M (2001) Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path? Trends Neurosci 24:25–31

    PubMed  CAS  Google Scholar 

  • Copani A, Sortino MA, Caricasole A, Chiechio S, Chisari M, Battaglia G, Giuffrida-Stella AM, Vancheri C, Nicoletti F (2002) Erratic expression of DNA polymerases by beta-amyloid causes neuronal death. FASEB J 16:2006–2008

    PubMed  CAS  Google Scholar 

  • Copani A, Caraci F, Hoozemans JJ, Calafiore M, Sortino MA, Nicoletti F (2007) The nature of the cell cycle in neurons: focus on a “non-canonical” pathway of DNA replication causally related to death. Biochim Biophys Acta 1772:409–412

    PubMed  CAS  Google Scholar 

  • Copani A, Guccione S, Giurato L, Caraci F, Calafiore M, Sortino MA, Nicoletti F (2008) The cell cycle molecules behind neurodegeneration in Alzheimer’s disease: perspectives for drug development. Curr Med Chem 15:2420–2432

    PubMed  CAS  Google Scholar 

  • Cregan SP, Arbour NA, Maclaurin JG, Callaghan SM, Fortin A, Cheung EC, Guberman DS, Park DS, Slack RS (2004) p53 activation domain 1 is essential for PUMA upregulation and p53-mediated neuronal cell death. J Neurosci 24:10003–10012

    PubMed  CAS  Google Scholar 

  • Croxton R, Ma Y, Cress WD (2002) Differences in DNA binding properties between E2F1 and E2F4 specify repression of the Mcl-1 promoter. Oncogene 21:1563–1570

    Google Scholar 

  • Cruz JC, Tsai LH (2004) Cdk5 deregulation in the pathogenesis of Alzheimer’s disease. Trends Mol Med 10:452–458

    PubMed  CAS  Google Scholar 

  • Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40:471–483

    Google Scholar 

  • Damiano M, Galvan L, Déglon N, Brouillet E (2010) Mitochondria in Huntington’s disease. Biochim Biophys Acta 1802:52–61

    PubMed  CAS  Google Scholar 

  • Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, Faden AI (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci USA 102:8333–8338

    PubMed  CAS  Google Scholar 

  • Dimova DK, Dyson NJ (2005) The E2F transcriptional network: old acquaintances with new faces. Oncogene 24:2810–2826

    PubMed  CAS  Google Scholar 

  • Eischen CM, Packham G, Nip J, Fee BE, Hiebert SW, Zambetti GP, Cleveland JL (2001) Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F–1. Oncogene 20:6983–6993

    PubMed  CAS  Google Scholar 

  • Fernandez–Fernandez MR, Ferrer I, Lucas JJ (2011) Impaired ATF6α processing, decreased Rheb and neuronal cell cycle re-entry in Huntington’s disease. Neurobiol Dis 41:23–32

    PubMed  Google Scholar 

  • Furukawa Y, Nishimura N, Furukawa Y, Satoh M, Endo H, Iwase S, Yamada H, Matsuda M, Kano Y, Nakamura M (2002) Apaf-1 is a mediator of E2F-1-induced apoptosis. J Biol Chem 277:39760–39768

    PubMed  CAS  Google Scholar 

  • Giovanni A, Keramaris E, Morris EJ, Hou ST, O’Hare M, Dyson N, Robertson GS, Slack RS, Park DS (2000) E2F1 mediates death of B-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. J Biol Chem 275:11553–11560

    PubMed  CAS  Google Scholar 

  • Herrup K, Neve R, Ackerman SL, Copani A (2004) Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 24:9232–9239

    PubMed  CAS  Google Scholar 

  • Hershko T, Ginsberg D (2004) Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem 279:8627–8634

    Google Scholar 

  • Höglinger GU, Breunig JJ, Depboylu C, Rouaux C, Michel PP, Alvarez-Fischer D, Boutillier AL, Degregori J, Oertel WH, Rakic P, Hirsch EC, Hunot S (2007) The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc Natl Acad Sci USA 104:3585–3590

    PubMed  Google Scholar 

  • Hou ST, Callaghan D, Fournier MC, Hill I, Kang L, Massie B, Morley P, Murray C, Rasquinha I, Slack R, MacManus JP (2000) The transcription factor E2F1 modulates apoptosis of neurons. J Neurochem 75:91–100

    PubMed  CAS  Google Scholar 

  • Hou ST, Cowan E, Walker T, Ohan N, Dove M, Rasqinha I, MacManus JP (2001) The transcription factor E2F1 promotes dopamine-evoked neuronal apoptosis by a mechanism independent of transcriptional activation. J Neurochem 78:287–297

    PubMed  CAS  Google Scholar 

  • Huang E, Qu D, Park DS (2010a) Cdk5: links to DNA damage. Cell Cycle 9:3142–3143

    PubMed  CAS  Google Scholar 

  • Huang E, Qu D, Zhang Y, Venderova K, Haque ME, Rousseaux MW, Slack RS, Woulfe JM, Park DS (2010b) The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death. Nat Cell Biol 12:563–571

    PubMed  CAS  Google Scholar 

  • Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W, Flores ER, Tsai KY, Jacks T, Vousden KH, Kaelin WG (2000) Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407:645–648

    Google Scholar 

  • Jacobsen E, Beach T, Shen Y, Li R, Chang Y (2004) Deficiency of the Mre11 DNA repair complex in Alzheimer’s disease brains. Brain Res Mol Brain Res 128:1–7

    PubMed  CAS  Google Scholar 

  • Jiang H, Martin V, Gomez-Manzano C, Johnson DG, Alonso M, White E, Xu J, McDonnell TJ, Shinojima N, Fueyo J (2010) The RB-E2F1 pathway regulates autophagy. Cancer Res 70:7882–7893

    PubMed  CAS  Google Scholar 

  • Jordan-Sciutto KL, Morgan K, Bowser R (1999) Increased cyclin G1 immunoreactivity during Alzheimer’s disease. J Alzheimers Dis 1:409–417

    PubMed  CAS  Google Scholar 

  • Jordan-Sciutto KL, Wang G, Murphy-Corb M, Wiley CA (2000) Induction of cell-cycle regulators in simian immunodeficiency virus encephalitis. Am J Pathol 2000(157):497–507

    Google Scholar 

  • Jordan-Sciutto K, Rhodes J, Bowser R (2001) Altered subcellular distribution of transcriptional regulators in response to Abeta peptide and during Alzheimer’s disease. Mech Ageing Dev 123:11–20

    PubMed  CAS  Google Scholar 

  • Jordan-Sciutto KL, Malaiyandi LM, Bowser R (2002a) Altered distribution of cell cycle transcriptional regulators during Alzheimer disease. J Neuropathol Exp Neuro 2002(61):358–367

    Google Scholar 

  • Jordan-Sciutto KL, Wang G, Murphey-Corb M, Wiley CA (2002b) Cell cycle proteins exhibit altered expression patterns in lentiviral-associated encephalitis. J Neurosci 22:2185–2195

    PubMed  CAS  Google Scholar 

  • Jordan-Sciutto KL, Dorsey R, Chalovich EM, Hammond RR, Achim CL (2003) Expression patterns of retinoblastoma protein in Parkinson disease. J Neuropathol Exp Neurol 62:68–74

    PubMed  CAS  Google Scholar 

  • Katchanov J, Harms C, Gertz K, Hauck L, Waeber C, Hirt L, Priller J, von Harsdorf R, Bruck W, Hortnagl H, Dirnagl U, Bhide PG, Endres M (2000) Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J Neurosci 2001(21):5045–5053

    Google Scholar 

  • Kim D, Frank CL, Dobbin MM, Tsunemoto RK, Tu W, Peng PL, Guan JS, Lee BH, Moy LY, Giusti P, Broodie N, Mazitschek R, Delalle I, Haggarty SJ, Neve RL, Lu Y, Tsai LH (2008) Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60:803–817

    PubMed  CAS  Google Scholar 

  • Kim MK, Kim SC, Kang JI, Hyun JH, Boo HJ, Eun SY, Park DB, Yoo ES, Kang HK, Kang JH (2011) 6-Hydroxydopamine-induced PC12 cell death is mediated by MEF2D down-regulation. Neurochem Res 36:223–231

    PubMed  Google Scholar 

  • Klein JA, Ackerman SL (2003) Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111:785–793

    PubMed  CAS  Google Scholar 

  • Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419:367–374

    PubMed  CAS  Google Scholar 

  • Konishi Y, Bonni A (2003) The E2F-Cdc2 cell-cycle pathway specifically mediates activity deprivation-induced apoptosis of postmitotic neurons. J Neurosci 23:1649–1658

    PubMed  CAS  Google Scholar 

  • Koulich E, Nguyen T, Johnson K, Giardina C, D’mello S (2001) NF-kappaB is involved in the survival of cerebellar granule neurons: association of Ikappa β phosphorylation with cell survival. J Neurochem 76:1188–1198

    PubMed  CAS  Google Scholar 

  • Kruman II (2004) Why do neurons enter the cell cycle? Cell Cycle 3:769–773

    PubMed  CAS  Google Scholar 

  • Kruman II, Wersto RP, Cardozo-Pelaez F, Smilenov L, Chan SL, Chrest FJ, Emokpae R Jr, Gorospe M, Mattson MP (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41:549–561

    PubMed  CAS  Google Scholar 

  • Lee HG, Casadesus G, Zhu X, Castellani RJ, McShea A, Perry G, Petersen RB, Bajic V, Smith MA (2009) Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer’s disease. Neurochem Int 54:84–88

    PubMed  CAS  Google Scholar 

  • Lee CH, Yoo KY, Choi JH, Park OK, Hwang IK, Choi SY, Kim DH, Won MH (2011) Cyclin D1 immunoreactivity changes in CA1 pyramidal neurons and dentate granule cells in the gerbil hippocampus after transient forebrain ischemia. Neurol Res 33:93–100

    PubMed  Google Scholar 

  • Lim AC, Qi RZ (2003) Cyclin-dependent kinases in neural development and degeneration. J Alzheimers Dis 5:329–335

    PubMed  CAS  Google Scholar 

  • Liu DX, Greene LA (2001) Regulation of neuronal survival and death by E2F-dependent gene repression and derepression. Neuron 32:425–438

    PubMed  CAS  Google Scholar 

  • Liu DX, Biswas SC, Greene LA (2004) B-myb and C-myb play required roles in neuronal apoptosis evoked by nerve growth factor deprivation and DNA damage. J Neurosci 24:8720–8725

    PubMed  CAS  Google Scholar 

  • Lockshin RA, Zakari Z (2004) Apoptosis, autophagy and more. Int J Biochem Cell Biol 36:2405–2419

    PubMed  CAS  Google Scholar 

  • Lopes JP, Agostinho P (2011) Cdk5: multitasking between physiological and pathological conditions. Prog Neurobiol 94:49–63

    PubMed  CAS  Google Scholar 

  • Lopes JP, Oliveira CR, Agostinho P (2009) Cdk5 acts as a mediator of neuronal cell cycle re-entry triggered by amyloid-beta and prion peptides. Cell Cycle 8:97–104

    PubMed  CAS  Google Scholar 

  • Lopes JP, Oliveira CR, Agostinho P (2010) Neurodegeneration in an Abeta-induced model of Alzheimer’s disease: the role of Cdk5. Aging Cell 9:64–77

    PubMed  CAS  Google Scholar 

  • Love S (2003) Neuronal expression of cell cycle-related proteins after brain ischaemia in man. Neurosci Lett 353:29–32

    PubMed  CAS  Google Scholar 

  • Luo Y, Hattori A, Munoz J, Qin ZH, Roth GS (1999) Intrastriatal dopamine injection induces apoptosis through oxidation-involved activation of transcription factors AP-1 and NF-kappaB in rats. Mol Pharmacol 56:254–264

    Google Scholar 

  • Maccioni RB, Munoz JP, Barbeito L (2001) The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res 32:367–381

    PubMed  CAS  Google Scholar 

  • MacManus JP, Koch CJ, Jian M, Walker T, Zurakowski B (1999) Decreased brain infarct following focal ischemia in mice lacking the transcription factor E2F1. Neuroreport 10:2711–2714

    PubMed  CAS  Google Scholar 

  • MacManus JP, Jian M, Preston E, Rasquinha I, Webster J, Zurakowski B (2003) Absence of the transcription factor E2F1 attenuates brain injury and improves behavior after focal ischemia in mice. J Cereb Blood Flow Metab 23:1020–1028

    PubMed  CAS  Google Scholar 

  • Martin-Romero FJ, Santiago-Josefat B, Correa-Bordes J, Gutierrez-Merino C, Fernandez-Salguero P (2000) Potassium-induced apoptosis in rat cerebellar granule cells involves cell-cycle blockade at the G1/S transition. J Mol Neurosci 15:155–165

    PubMed  CAS  Google Scholar 

  • Massagué J (2004) G1 cell-cycle control and cancer. Nature 432:298–306

    PubMed  Google Scholar 

  • McMurray CT (2005) To die or not to die: DNA repair in neurons. Mutat Res 2005(577):260–274

    Google Scholar 

  • Morris LG, Veeriah S, Chan TA (2010) Genetic determinants at the interface of cancer and neurodegenerative disease. Oncogene 29:3453–34564

    PubMed  CAS  Google Scholar 

  • Motonaga K, Itoh M, Hirayama A, Hirano S, Becker LE, Goto Y, Takashima S (2001) Up-regulation of E2F1 in Down’s syndrome brain exhibiting neuropathological features of Alzheimer-type dementia. Brain Res 905:250–253

    PubMed  CAS  Google Scholar 

  • Nagy Z, Esiri MM, Smith AD (1998) The cell division cycle and the pathophysiology of Alzheimer’s disease. Neuroscience 87:731–739

    PubMed  CAS  Google Scholar 

  • Nahle Z, Polakoff J, Davuluri RV, McCurrach ME, Jacobson MD, Narita M, Zhang MQ, Lazebnik Y, Bar-Sagi D, Lowe SW (2002) Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 4:859–864

    PubMed  CAS  Google Scholar 

  • Nair VD (2006) Activation of p53 signaling initiates apoptotic death in a cellular model of Parkinson’s disease. Apoptosis 11:955–966

    PubMed  CAS  Google Scholar 

  • Neve RL, McPhie DL (2006) The cell cycle as a therapeutic target for Alzheimer’s disease. Pharmacol Ther 111:99–113

    PubMed  CAS  Google Scholar 

  • Nunomura A, Moreira PI, Lee HG, Zhu X, Castellani RJ, Smith MA, Perry G (2007) Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol Disord Drug Targets 6:411–423

    PubMed  CAS  Google Scholar 

  • O’Hare MJ, Hou ST, Morris EJ, Cregan SP, Xu Q, Slack RS, Park DS (2000) Induction and modulation of cerebellar granule neuron death by E2F1. J Biol Chem 275:25264–25358

    Google Scholar 

  • Osuga H, Osuga S, Wang F, Fetni R, Hogan MJ, Slack RS, Hakim AM, Ikeda JE, Park DS (2000) Cyclin-dependent kinases as a therapeutic target for stroke. Proc Natl Acad Sci USA 97:10254–10259

    PubMed  CAS  Google Scholar 

  • Ozaki T, Okoshi R, Sang M, Kubo N, Nakagawara A (2009) Acetylation status of E2F–1 has an important role in the regulation of E2F-1-mediated transactivation of tumor suppressor p73. Biochem Biophys Res Commun 386:207–211

    PubMed  CAS  Google Scholar 

  • Padmanabhan J, Park DS, Greene LA, Shelanski ML (1999) Role of cell cycle regulatory proteins in cerebellar granule neuron apoptosis. J Neurosci 19:8747–8756

    PubMed  CAS  Google Scholar 

  • Paik JC, Wang B, Liu K, Lue JK, Lin WC (2010) Regulation of E2F1-induced apoptosis by the nucleolar protein RRP1B. J Biol Chem 285:6348–6363

    PubMed  CAS  Google Scholar 

  • Pallas M, Verdaguer E, Jorda EG, Jimenez A, Canudas AM, Camins A (2005) Flavopiridol: an antitumor drug with potential application in the treatment of neurodegenerative diseases. Med Hypotheses 64:120–123

    PubMed  CAS  Google Scholar 

  • Park DS, Morris EJ, Greene LA, Geller HM (1997) G1/S cell cycle blockers and inhibitors of cyclin-dependent kinases suppress camptothecin-induced neuronal apoptosis. J Neurosci 17:1256–1270

    PubMed  CAS  Google Scholar 

  • Park DS, Morris EJ, Stefanis L, Troy CM, Shelanski ML, Geller HM, Greene LA (1998) Multiple pathways of neuronal death induced by DNA-damaging agents, NGF deprivation, and oxidative stress. J Neurosci 18:830–840

    PubMed  CAS  Google Scholar 

  • Park DS, Obeidat A, Giovanni A, Greene LA (2000) Cell cycle regulators in neuronal death evoked by excitotoxic stress: implications for neurodegeneration and its treatment. Neurobiol Aging 21:771–871

    PubMed  CAS  Google Scholar 

  • Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402:615–622

    PubMed  CAS  Google Scholar 

  • Patzke H, Tsai LH (2002) Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. J Biol Chem 277:8054–8060

    PubMed  CAS  Google Scholar 

  • Pelegrí C, Duran-Vilaregut J, del Valle J, Crespo-Biel N, Ferrer I, Pallàs M, Camins A, Vilaplana J (2008) Cell cycle activation in striatal neurons from Huntington’s disease patients and rats treated with 3-nitropropionic acid. Int J Dev Neurosci 26:665–671

    PubMed  Google Scholar 

  • Phillips AC, Ernst MK, Bates S, Rice NR, Vousden KH (1999) E2F1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol Cell 4:771–781

    PubMed  CAS  Google Scholar 

  • Pizarro JG, Junyent F, Verdaguer E, Jordan J, Beas-Zarate C, Pallàs M, Camins A, Folch J (2010) Effects of MPP+ on the molecular pathways involved in cell cycle control in B65 neuroblastoma cells. Pharmacol Res 61:391–399

    PubMed  CAS  Google Scholar 

  • Polager S, Ginsberg D (2008) E2F - at the crossroads of life and death. Trends Cell Biol 18:528–535

    Google Scholar 

  • Polager S, Ginsberg D (2009) p53 and E2f: partners in life and death. Nat Rev Cancer 9:738–748

    PubMed  CAS  Google Scholar 

  • Polager S, Ofir M, Ginsberg D (2008) E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 27:4860–4864

    PubMed  CAS  Google Scholar 

  • Putzer BM, Tuve S, Tannapfel A, Stiewe T (2003) Increased DeltaN-p73 expression in tumors by upregulation of the E2F1-regulated, TA-promoter-derived DeltaN’-p73 transcript. Cell Death Differ 10:612–624

    PubMed  CAS  Google Scholar 

  • Ranganathan S, Bowser R (2003) Alterations in G(1) to S phase cell-cycle regulators during amyotrophic lateral sclerosis. Am J Pathol 162:823–835

    PubMed  CAS  Google Scholar 

  • Ranganathan S, Bowser R (2010) p53 and cell cycle proteins participate in spinal motor neuron cell death in ALS. Open Pathol J 4:11–22

    PubMed  CAS  Google Scholar 

  • Rashidian J, Iyirhiaro G, Aleyasin H, Rios M, Vincent I, Callaghan S, Bland RJ, Slack RS, During MJ, Park DS (2005) Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo. Proc Natl Acad Sci USA 102:14080–14085

    PubMed  CAS  Google Scholar 

  • Rashidian J, Iyirhiaro GO, Park DS (2007) Cell cycle machinery and stroke. Biochim Biophys Acta 1772:484–493

    PubMed  CAS  Google Scholar 

  • Sakai K, Kitagawa Y, Saiki S, Saiki M, Hirose G (2004) Effect of a paraneoplastic cerebellar degeneration-associated neural protein on B-myb promoter activity. Neurobiol Dis 15:529–533

    PubMed  CAS  Google Scholar 

  • Salon C, Eymin B, Micheau O, Chaperot L, Plumas J, Brambilla C, Brambilla E, Gazzeri S (2006) E2F1 induces apoptosis and sensitizes human lung adenocarcinoma cells to death-receptor-mediated apoptosis through specific downregulation of c-FLIP(short). Cell Death Differ 13:260–272

    PubMed  CAS  Google Scholar 

  • Schmetsdorf S, Gärtner U, Arendt T (2007) Constitutive expression of functionally active cyclin-dependent kinases and their binding partners suggests noncanonical functions of cell cycle regulators in differentiated neurons. Cereb Cortex 17:1821–1829

    PubMed  Google Scholar 

  • Schmetsdorf S, Arnold E, Holzer M, Arendt T, Gärtner U (2009) A putative role for cell cycle-related proteins in microtubule-based neuroplasticity. Eur J Neurosci 29:1096–1107

    PubMed  Google Scholar 

  • Schwartz EI, Smilenov LB, Price MA, Osredkar T, Baker RA, Ghosh S, Shi FD, Vollmer TL, Lencinas A, Stearns DM, Gorospe M, Kruman II (2007) Cell cycle activation in postmitotic neurons is essential for DNA repair. Cell Cycle 6:318–329

    PubMed  CAS  Google Scholar 

  • Smith PD, Crocker SJ, Jackson-Lewis V, Jordan-Sciutto KL, Hayley S, Mount MP, O’Hare MJ, Callaghan S, Slack RS, Przedborski S, Anisman H, Park DS (2003a) Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 100:13650–13655

    PubMed  CAS  Google Scholar 

  • Smith RA, Walker T, Xie X, Hou ST (2003b) Involvement of the transcription factor E2F1/Rb in kainic acid-induced death of murine cerebellar granule cells. Brain Res Mol Brain Res 116:70–79

    PubMed  CAS  Google Scholar 

  • Smith PD, O’Hare MJ, Park DS (2004) Emerging pathogenic role for cyclin dependent kinases in neurodegeneration. Cell Cycle 3:289–291

    PubMed  CAS  Google Scholar 

  • Stanelle J, Putzer BM (2006) E2F1-induced apoptosis: turning killers into therapeutics. Trends Mol Med 12:177–185

    PubMed  CAS  Google Scholar 

  • Stanelle J, Tu-Rapp H, Putzer BM (2005) A novel mitochondrial protein DIP mediates E2F1-induced apoptosis independently of p53. Cell Death Differ 12:347–357

    PubMed  CAS  Google Scholar 

  • Strachan GD, Koike MA, Siman R, Hall DJ, Jordan-Sciutto KL (2005) E2F1 induces cell death, calpain activation, and MDMX degradation in a transcription independent manner implicating a novel role for E2F1 in neuronal loss in SIV encephalitis. J Cell Biochem 96:728–740

    PubMed  CAS  Google Scholar 

  • Sun KH, de Pablo Y, Vincent F, Shah K (2008) Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction. J Neurochem 107:265–278

    PubMed  CAS  Google Scholar 

  • Sun KH, Lee HG, Smith MA, Shah K (2009) Direct and indirect roles of cyclin-dependent kinase 5 as an upstream regulator in the c-Jun NH2-terminal kinase cascade: relevance to neurotoxic insults in Alzheimer’s disease. Mol Biol Cell 2021:4611–4619

    Google Scholar 

  • Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF (2007) BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27:6229–6242

    PubMed  CAS  Google Scholar 

  • Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371(6496):419–423

    Google Scholar 

  • Tsai LH, Lee MS, Cruz J (2004) Cdk5, a therapeutic target for Alzheimer’s disease? Biochim Biophys Acta 1697:137–142

    PubMed  CAS  Google Scholar 

  • Ueberham U, Arendt T (2005) The expression of cell cycle proteins in neurons and its relevance for Alzheimer’s disease. Curr Drug Targets CNS Neurol Disord 4:293–306

    PubMed  CAS  Google Scholar 

  • Veeriah S, Morris L, Solit D, Chan TA (2010) The familial Parkinson disease gene PARK2 is a multisite tumor suppressor on chromosome 6q25.2–27 that regulates cyclin E. Cell Cycle 9:1451–1452

    PubMed  CAS  Google Scholar 

  • Verdaguer E, Garcia-Jorda E, Canudas AM, Dominguez E, Jimenez A, Pubill D, Escubedo E, Camarasa J, Pallas M, Camins A (2002) Kainic acid-induced apoptosis in cerebellar granule neurons: an attempt at cell cycle re-entry. Neuroreport 13:413–416

    PubMed  CAS  Google Scholar 

  • Verdaguer E, Jimenez A, Canudas AM, Jorda EG, Sureda FX, Pallas M, Camins A (2004) Inhibition of cell cycle pathway by flavopiridol promotes survival of cerebellar granule cells after an excitotoxic treatment. J Pharmacol Exp Ther 308:609–616

    PubMed  CAS  Google Scholar 

  • Verdaguer E, Jorda EG, Alvira D, Jimenez A, Canudas AM, Folch J, Rimbau V, Pallas M, Camins A (2005) Inhibition of multiple pathways accounts for the antiapoptotic effects of flavopiridol on potassium withdrawal-induced apoptosis in neurons. J Mol Neurosci 26:71–84

    PubMed  CAS  Google Scholar 

  • Vincent I, Rosado M, Davies P (1996) Mitotic mechanisms in Alzheimer’s disease? J Cell Biol 132:413–425

    PubMed  CAS  Google Scholar 

  • Wallace DM, Cotter TG (2009) Histone deacetylase activity in conjunction with E2F-1 and p53 regulates Apaf-1 expression in 661 W cells and the retina. J Neurosci Res 87:887–905

    PubMed  CAS  Google Scholar 

  • Wang F, Corbett D, Osuga H, Osuga S, Ikeda JE, Slack RS, Hogan MJ, Hakim AM, Park DS (2002) Inhibition of cyclin-dependent kinases improves CA1 neuronal survival and behavioral performance after global ischemia in the rat. J Cereb Blood Flow Metab 22:171–182

    PubMed  CAS  Google Scholar 

  • Wang B, Liu K, Lin FT, Lin WC (2004) A role for 14–3-3 tau in E2F1 stabilization and DNA damage-induced apoptosis. J Biol Chem 279:54140–54152

    PubMed  CAS  Google Scholar 

  • Webber KM, Raina AK, Marlatt MW, Zhu X, Prat MI, Morelli L, Casadesus G, Perry G, Smith MA (2005) The cell cycle in Alzheimer disease: a unique target for neuropharmacology. Mech Ageing Dev 126:1019–1025

    PubMed  CAS  Google Scholar 

  • Wen Y, Yang S, Liu R, Simpkins JW (2005) Cell-cycle regulators are involved in transient cerebral ischemia induced neuronal apoptosis in female rats. FEBS Lett 579:4591–4599

    PubMed  CAS  Google Scholar 

  • Wu Chen R, Zhang Y, Rose ME, Graham SH (2004) Cyclooxygenase-2 activity contributes to neuronal expression of cyclin D1 after anoxia/ischemia in vitro and in vivo. Brain Res Mol Brain Res 132:31–37

    PubMed  Google Scholar 

  • Xie W, Jiang P, Miao L, Zhao Y, Zhimin Z, Qing L, Zhu WG, Wu M (2006) Novel link between E2F1 and Smac/DIABLO: proapoptotic Smac/DIABLO is transcriptionally upregulated by E2F1. Nucleic Acids Res 34:2046–2255

    PubMed  CAS  Google Scholar 

  • Yang Y, Geldmacher DS, Herrup K (2001) DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci 21:2661–2668

    PubMed  CAS  Google Scholar 

  • Yang Y, Mufson EJ, Herrup K (2003) Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J Neurosci 23:2557–2563

    PubMed  CAS  Google Scholar 

  • Yu X, Caltagarone J, Smith MA, Bowser R (2005) DNA damage induces cdk2 protein levels and histone H2B phosphorylation in SH-SY5Y neuroblastoma cells. J Alzheimers Dis 8:7–21

    Google Scholar 

  • Zhang M, Li J, Chakrabarty P, Bu B, Vincent I (2004) Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in Niemann-Pick Type C mice. Am J Pathol 165:843–853

    PubMed  CAS  Google Scholar 

  • Zhu X, Castellani RJ, Takeda A, Nunomura A, Atwood CS, Perry G, Smith MA (2001) Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the ‘two hit’ hypothesis. Mech Ageing Dev 123:39–46

    PubMed  CAS  Google Scholar 

  • Zhu X, Raina AK, Perry G, Smith MA (2004) Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol 3:219–226

    PubMed  CAS  Google Scholar 

  • Zhu X, Lee HG, Perry G, Smith MA (2007) Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta 1772:494–502

    PubMed  CAS  Google Scholar 

  • Zhu J, Li W, Mao Z. (2011) Cdk5: Mediator of neuronal development, death and the response to DNA damage. Mech Ageing Dev. May 11. [Epub ahead of print]

Download references

Acknowledgments

This study was supported by grants from Spain’s “Ministerio de Educación y Ciencia” SAF2009-13093, SAF2011-23631, BFU2010-19119 and BFU2010-22149 the “Fondo de Investigación Sanitaria”, and the “Instituto de Salud Carlos III” PI080400 and PS09/01789 (FEDER FOUNDS). 610RT0405 from Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo (CYTED). The authors would like to thank the “Generalitat de Catalunya” for supporting the research groups (2009/SGR00853) and the “Fundació la Marató TV3” (063230). The authors wish to thank the Language Assessment Service of the University of Barcelona for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Camins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folch, J., Junyent, F., Verdaguer, E. et al. Role of Cell Cycle Re-Entry in Neurons: A Common Apoptotic Mechanism of Neuronal Cell Death. Neurotox Res 22, 195–207 (2012). https://doi.org/10.1007/s12640-011-9277-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9277-4

Keywords

Navigation