Skip to main content
Log in

Multiple Phases of Climbing Fiber Synapse Elimination in the Developing Cerebellum

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Functional neural circuits in the mature animals are shaped during postnatal development by elimination of unnecessary synapses and strengthening of necessary ones among redundant synaptic connections formed transiently around birth. In the cerebellum of neonatal rodents, excitatory synapses are formed on the somata of Purkinje cells (PCs) by climbing fibers (CFs) that originate from neurons in the contralateral inferior olive. Each PC receives inputs from multiple (~ five) CFs that have about equal synaptic strengths. Subsequently, a single CF selectively becomes stronger relative to the other CFs during the first postnatal week. Then, from around postnatal day 9 (P9), only the strongest CF (“winner” CF) extends its synaptic territory along PC dendrites. In contrast, synapses of the weaker CFs (“loser” CFs) remain on the soma and the most proximal portion of the dendrite together with somatic synapses of the “winner” CF. These perisomatic CF synapses are eliminated progressively during the second and the third postnatal weeks. From P6 to P11, the elimination proceeds independently of the formation of the synapses on PC dendrites by parallel fibers (PFs). From P12 and thereafter, the elimination requires normal PF-PC synapse formation and is presumably dependent on the PF synaptic inputs. Most PCs become mono-innervated by single strong CFs on their dendrites in the third postnatal week. In this review article, we will describe how adult-type CF mono-innervation of PC is established through these multiple phases of postnatal cerebellar development and make an overview of molecular/cellular mechanisms underlying them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gan WB, Kwon E, Feng G, Sanes JR, Lichtman JW. Synaptic dynamism measured over minutes to months: age-dependent decline in an autonomic ganglion. Nat Neurosci. 2003;6(9):956–60.

    Article  CAS  PubMed  Google Scholar 

  2. Walsh MK, Lichtman JW. In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron. 2003;37(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  3. Crepel F. Regression of functional synapses in the immature mammalian cerebellum. Trends Neurosci. 1982;5:266–9.

    Article  Google Scholar 

  4. Hashimoto K, Kano M. Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum. Neurosci Res. 2005;53(3):221–8.

    Article  PubMed  Google Scholar 

  5. Kano M, Hashimoto K. Synapse elimination in the central nervous system. Curr Opin Neurobiol. 2009;19(2):154–61.

    Article  CAS  PubMed  Google Scholar 

  6. Lohof AM, Delhaye-Bouchaud N, Mariani J. Synapse elimination in the central nervous system: functional significance and cellular mechanisms. Rev Neurosci. 1996;7(2):85–101.

    Article  CAS  PubMed  Google Scholar 

  7. Ito M. The cerebellum and neural control. New York: Raven Press; 1984.

    Google Scholar 

  8. Palay SL, Chan-Palay V. Cerebellar cortex. New York: Springer-Verlag; 1974.

    Book  Google Scholar 

  9. Hashimoto K, Kano M. Synapse elimination in the developing cerebellum. Cell Mol Life Sci. 2013;70(24):4667–80.

    Article  CAS  PubMed  Google Scholar 

  10. Watanabe M, Kano M. Climbing fiber synapse elimination in cerebellar Purkinje cells. Eur J Neurosci. 2011;34(10):1697–710.

    Article  PubMed  Google Scholar 

  11. Wassef M, Chedotal A, Cholley B, Thomasset M, Heizmann CW, Sotelo C. Development of the olivocerebellar projection in the rat: I. Transient biochemical compartmentation of the inferior olive. J Comp Neurol. 1992;323(4):519–36.

    Article  CAS  PubMed  Google Scholar 

  12. Chedotal A, Sotelo C. The ‘creeper stage’ in cerebellar climbing fiber synaptogenesis precedes the ‘pericellular nest’—ultrastructural evidence with parvalbumin immunocytochemistry. Brain Res Dev Brain Res. 1993;76(2):207–20.

    Article  CAS  PubMed  Google Scholar 

  13. Sugihara I. Microzonal projection and climbing fiber remodeling in single olivocerebellar axons of newborn rats at postnatal days 4-7. J Comp Neurol. 2005;487(1):93–106.

    Article  PubMed  Google Scholar 

  14. Ichikawa R, Yamasaki M, Miyazaki T, Konno K, Hashimoto K, Tatsumi H, et al. Developmental switching of perisomatic innervation from climbing fibers to basket cell fibers in cerebellar Purkinje cells. J Neurosci. 2011;31(47):16916–27.

    Article  CAS  PubMed  Google Scholar 

  15. Crepel F. Maturation of climbing fiber responses in the rat. Brain Res. 1971;35(1):272–6.

    Article  CAS  PubMed  Google Scholar 

  16. Crepel F, Mariani J, Delhaye-Bouchaud N. Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J Neurobiol. 1976;7(6):567–78.

    Article  CAS  PubMed  Google Scholar 

  17. Crepel F, Delhaye-Bouchaud N, Dupont JL. Fate of the multiple innervation of cerebellar Purkinje cells by climbing fibers in immature control, x-irradiated and hypothyroid rats. Brain Res. 1981;227(1):59–71.

    Article  CAS  PubMed  Google Scholar 

  18. Mariani J, Changeux JP. Ontogenesis of olivocerebellar relationships. I. Studies by intracellular recordings of the multiple innervation of Purkinje cells by climbing fibers in the developing rat cerebellum. J Neurosci. 1981;1(7):696–702.

    Article  CAS  PubMed  Google Scholar 

  19. Edwards FA, Konnerth A, Sakmann B, Takahashi T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch. 1989;414(5):600–12.

    Article  CAS  PubMed  Google Scholar 

  20. Bosman LW, et al. Homosynaptic long-term synaptic potentiation of the “winner” climbing fiber synapse in developing Purkinje cells. J Neurosci. 2008;28(4):798–807.

    Article  CAS  PubMed  Google Scholar 

  21. Hashimoto K, Kano M. Functional differentiation of multiple climbing fiber inputs during synapse elimination in the developing cerebellum. Neuron. 2003;38(5):785–96.

    Article  CAS  PubMed  Google Scholar 

  22. Ohtsuki G, Hirano T. Bidirectional plasticity at developing climbing fiber-Purkinje neuron synapses. Eur J Neurosci. 2008;28(12):2393–400.

    Article  PubMed  Google Scholar 

  23. Scelfo B, Strata P. Correlation between multiple climbing fibre regression and parallel fibre response development in the postnatal mouse cerebellum. Eur J Neurosci. 2005;21(4):971–8.

    Article  PubMed  Google Scholar 

  24. Kawamura Y, Nakayama H, Hashimoto K, Sakimura K, Kitamura K, Kano M. Spike timing-dependent selective strengthening of single climbing fibre inputs to Purkinje cells during cerebellar development. Nat Commun. 2013;4:2732.

    Article  PubMed  Google Scholar 

  25. Good JM, Mahoney M, Miyazaki T, Tanaka KF, Sakimura K, Watanabe M, et al. Maturation of cerebellar Purkinje cell population activity during postnatal refinement of climbing fiber network. Cell Rep. 2017;21(8):2066–73.

    Article  CAS  PubMed  Google Scholar 

  26. Clements JD. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci. 1996;19(5):163–71.

    Article  CAS  PubMed  Google Scholar 

  27. Hashimoto K, Tsujita M, Miyazaki T, Kitamura K, Yamazaki M, Shin HS, et al. Postsynaptic P/Q-type Ca2+ channel in Purkinje cell mediates synaptic competition and elimination in developing cerebellum. Proc Natl Acad Sci U S A. 2011;108(24):9987–92.

    Article  CAS  PubMed  Google Scholar 

  28. Mintz IM, Adams ME, Bean BP. P-type calcium channels in rat central and peripheral neurons. Neuron. 1992;9(1):85–95.

    Article  CAS  PubMed  Google Scholar 

  29. Stea A, Tomlinson WJ, Soong TW, Bourinet E, Dubel SJ, Vincent SR, et al. Localization and functional properties of a rat brain α1A calcium channel reflect similarities to neuronal Q- and P-type channels. Proc Natl Acad Sci U S A. 1994;91(22):10576–80.

    Article  CAS  PubMed  Google Scholar 

  30. Kulik A, Nakadate K, Hagiwara A, Fukazawa Y, Lujan R, Saito H, et al. Immunocytochemical localization of the α1A subunit of the P/Q-type calcium channel in the rat cerebellum. Eur J Neurosci. 2004;19(8):2169–78.

    Article  PubMed  Google Scholar 

  31. Miyazaki T, Yamasaki M, Hashimoto K, Yamazaki M, Abe M, Usui H, et al. Cav2.1 in cerebellar Purkinje cells regulates competitive excitatory synaptic wiring, cell survival, and cerebellar biochemical compartmentalization. J Neurosci. 2012;32(4):1311–28.

    Article  CAS  PubMed  Google Scholar 

  32. Miyazaki T, Hashimoto K, Shin HS, Kano M, Watanabe M. P/Q-type Ca2+ channel α1A regulates synaptic competition on developing cerebellar Purkinje cells. J Neurosci. 2004;24(7):1734–43.

    Article  CAS  PubMed  Google Scholar 

  33. Kakizawa S, Yamada K, Iino M, Watanabe M, Kano M. Effects of insulin-like growth factor I on climbing fibre synapse elimination during cerebellar development. Eur J Neurosci. 2003;17(3):545–54.

    Article  PubMed  Google Scholar 

  34. Kakegawa W, Mitakidis N, Miura E, Abe M, Matsuda K, Takeo YH, et al. Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum. Neuron. 2015;85(2):316–29.

    Article  CAS  PubMed  Google Scholar 

  35. Uesaka N, Uchigashima M, Mikuni T, Nakazawa T, Nakao H, Hirai H, et al. Retrograde semaphorin signaling regulates synapse elimination in the developing mouse brain. Science. 2014;344(6187):1020–3.

    Article  CAS  PubMed  Google Scholar 

  36. Uesaka N, Abe M, Konno K, Yamazaki M, Sakoori K, Watanabe T, et al. Retrograde signaling from progranulin to Sort1 counteracts synapse elimination in the developing cerebellum. Neuron. 2018;97(4):796–805 e5.

    Article  CAS  PubMed  Google Scholar 

  37. Hashimoto K, Ichikawa R, Takechi H, Inoue Y, Aiba A, Sakimura K, et al. Roles of glutamate receptor δ2 subunit (GluRδ2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development. J Neurosci. 2001;21(24):9701–12.

    Article  CAS  PubMed  Google Scholar 

  38. Ichikawa R, Miyazaki T, Kano M, Hashikawa T, Tatsumi H, Sakimura K, et al. Distal extension of climbing fiber territory and multiple innervation caused by aberrant wiring to adjacent spiny branchlets in cerebellar Purkinje cells lacking glutamate receptor δ2. J Neurosci. 2002;22(19):8487–503.

    Article  CAS  PubMed  Google Scholar 

  39. Hirai H, Pang Z, Bao D, Miyazaki T, Li L, Miura E, et al. Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat Neurosci. 2005;8(11):1534–41.

    Article  CAS  PubMed  Google Scholar 

  40. Oostland M, Buijink MR, van Hooft JA. Serotonergic control of Purkinje cell maturation and climbing fibre elimination by 5-HT3 receptors in the juvenile mouse cerebellum. J Physiol. 2013;591(7):1793–807.

    Article  CAS  PubMed  Google Scholar 

  41. Jüttner R, et al. Impaired presynaptic function and elimination of synapses at premature stages during postnatal development of the cerebellum in the absence of CALEB (CSPG5/neuroglycan C). Eur J Neurosci. 2013;38(9):3270–80.

    Article  PubMed  Google Scholar 

  42. Kano M, Hashimoto K, Chen C, Abeliovich A, Aiba A, Kurihara H, et al. Impaired synapse elimination during cerebellar development in PKCγ mutant mice. Cell. 1995;83(7):1223–31.

    Article  CAS  PubMed  Google Scholar 

  43. Kano M, Hashimoto K, Kurihara H, Watanabe M, Inoue Y, Aiba A, et al. Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR1. Neuron. 1997;18(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  44. Levenes C, Daniel H, Jaillard D, Conquet F, Crépel F. Incomplete regression of multiple climbing fibre innervation of cerebellar Purkinje cells in mGluR1 mutant mice. Neuroreport. 1997;8(2):571–4.

    Article  CAS  PubMed  Google Scholar 

  45. Offermanns S, et al. Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking Gαq. Proc Natl Acad Sci U S A. 1997;94(25):14089–94.

    Article  CAS  PubMed  Google Scholar 

  46. Kano M, Hashimoto K, Watanabe M, Kurihara H, Offermanns S, Jiang H, et al. Phospholipase Cβ4 is specifically involved in climbing fiber synapse elimination in the developing cerebellum. Proc Natl Acad Sci U S A. 1998;95(26):15724–9.

    Article  CAS  PubMed  Google Scholar 

  47. Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, et al. mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science. 2000;288(5472):1832–5.

    Article  CAS  PubMed  Google Scholar 

  48. Ohtani Y, Miyata M, Hashimoto K, Tabata T, Kishimoto Y, Fukaya M, et al. The synaptic targeting of mGluR1 by its carboxyl-terminal domain is crucial for cerebellar function. J Neurosci. 2014;34(7):2702–12.

    Article  CAS  PubMed  Google Scholar 

  49. Ichikawa R, Hashimoto K, Miyazaki T, Uchigashima M, Yamasaki M, Aiba A, et al. Territories of heterologous inputs onto Purkinje cell dendrites are segregated by mGluR1-dependent parallel fiber synapse elimination. Proc Natl Acad Sci U S A. 2016;113(8):2282–7.

    Article  CAS  PubMed  Google Scholar 

  50. Uesaka N, Kano M. Presynaptic mechanisms mediating retrograde semaphorin signals for climbing fiber synapse elimination during postnatal cerebellar development. Cerebellum. 2018;17(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  51. Rabacchi S, Bailly Y, Delhaye-Bouchaud N, Mariani J. Involvement of the N-methyl D-aspartate (NMDA) receptor in synapse elimination during cerebellar development. Science. 1992;256(5065):1823–5.

    Article  CAS  PubMed  Google Scholar 

  52. Kakizawa S, Yamasaki M, Watanabe M, Kano M. Critical period for activity-dependent synapse elimination in developing cerebellum. J Neurosci. 2000;20(13):4954–61.

    Article  CAS  PubMed  Google Scholar 

  53. Bosman LW, Hartmann J, Barski JJ, Lepier A, Noll-Hussong M, Reichardt LF, et al. Requirement of TrkB for synapse elimination in developing cerebellar Purkinje cells. Brain Cell Biol. 2006;35(1):87–101.

    Article  CAS  PubMed  Google Scholar 

  54. Johnson EM, Craig ET, Yeh HH. TrkB is necessary for pruning at the climbing fibre-Purkinje cell synapse in the developing murine cerebellum. J Physiol. 2007;582(Pt 2):629–46.

    Article  CAS  PubMed  Google Scholar 

  55. Choo M, Miyazaki T, Yamazaki M, Kawamura M, Nakazawa T, Zhang J, et al. Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat Commun. 2017;8(1):195.

    Article  PubMed  Google Scholar 

  56. Kawata S, Miyazaki T, Yamazaki M, Mikuni T, Yamasaki M, Hashimoto K, et al. Global scaling down of excitatory postsynaptic responses in cerebellar Purkinje cells impairs developmental synapse elimination. Cell Rep. 2014;8(4):1119–29.

    Article  CAS  PubMed  Google Scholar 

  57. Nakayama H, Miyazaki T, Kitamura K, Hashimoto K, Yanagawa Y, Obata K, et al. GABAergic inhibition regulates developmental synapse elimination in the cerebellum. Neuron. 2012;74(2):384–96.

    Article  CAS  PubMed  Google Scholar 

  58. Takagishi Y, Hashimoto K, Kayahara T, Watanabe M, Otsuka H, Mizoguchi A, et al. Diminished climbing fiber innervation of Purkinje cells in the cerebellum of myosin Va mutant mice and rats. Dev Neurobiol. 2007;67(7):909–23.

    Article  CAS  PubMed  Google Scholar 

  59. Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, et al. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci. 1998;10(3):976–88.

    Article  CAS  PubMed  Google Scholar 

  60. Miyazaki T, Yamasaki M, Hashimoto K, Kohda K, Yuzaki M, Shimamoto K, et al. Glutamate transporter GLAST controls synaptic wrapping by Bergmann glia and ensures proper wiring of Purkinje cells. Proc Natl Acad Sci U S A. 2017;114(28):7438–43.

    Article  CAS  PubMed  Google Scholar 

  61. Miyazaki T, Hashimoto K, Uda A, Sakagami H, Nakamura Y, Saito SY, et al. Disturbance of cerebellar synaptic maturation in mutant mice lacking BSRPs, a novel brain-specific receptor-like protein family. FEBS Lett. 2006;580(17):4057–64.

    Article  CAS  PubMed  Google Scholar 

  62. Ribar TJ, Rodriguiz RM, Khiroug L, Wetsel WC, Augustine GJ, Means AR. Cerebellar defects in Ca2+/calmodulin kinase IV-deficient mice. J Neurosci. 2000;20(22):RC107.

    Article  CAS  PubMed  Google Scholar 

  63. Hansel C, de Jeu M, Belmeguenai A, Houtman SH, Buitendijk GHS, Andreev D, et al. αCaMKII is essential for cerebellar LTD and motor learning. Neuron. 2006;51(6):835–43.

    Article  CAS  PubMed  Google Scholar 

  64. Sherrard RM, Dixon KJ, Bakouche J, Rodger J, Lemaigre-Dubreuil Y, Mariani J. Differential expression of TrkB isoforms switches climbing fiber-Purkinje cell synaptogenesis to selective synapse elimination. Dev Neurobiol. 2009;69(10):647–62.

    Article  CAS  PubMed  Google Scholar 

  65. Altman J, Bayer SA. Development of the cerebellar system: in relation to its evolution, structure, and functions. Boca Raton: CRC Press; 1997.

    Google Scholar 

  66. Hashimoto K, Ichikawa R, Kitamura K, Watanabe M, Kano M. Translocation of a “winner” climbing fiber to the Purkinje cell dendrite and subsequent elimination of “losers” from the soma in developing cerebellum. Neuron. 2009;63(1):106–18.

    Article  CAS  PubMed  Google Scholar 

  67. Roth A, Hausser M. Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. J Physiol. 2001;535(Pt 2):445–72.

    Article  CAS  PubMed  Google Scholar 

  68. Carrillo J, Nishiyama N, Nishiyama H. Dendritic translocation establishes the winner in cerebellar climbing fiber synapse elimination. J Neurosci. 2013;33(18):7641–53.

    Article  CAS  PubMed  Google Scholar 

  69. Crepel F, Delhaye-Bouchaud N, Guastavino JM, Sampaio I. Multiple innervation of cerebellar Purkinje cells by climbing fibres in staggerer mutant mouse. Nature. 1980;283(5746):483–4.

    Article  CAS  PubMed  Google Scholar 

  70. Crepel F, Mariani J. Multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the Weaver Mutant Mouse. J Neurobiol. 1976;7(6):579–82.

    Article  CAS  PubMed  Google Scholar 

  71. Mariani J, Changeux JP. Multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the adult staggerer mutant mouse. J Neurobiol. 1980;11(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  72. Mariani J, Crepel F, Mikoshiba K, Changeux JP, Sotelo C. Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. Philos Trans R Soc Lond Ser B Biol Sci. 1977;281(978):1–28.

    Article  CAS  Google Scholar 

  73. Bravin M, Rossi F, Strata P. Different climbing fibres innervate separate dendritic regions of the same Purkinje cell in hypogranular cerebellum. J Comp Neurol. 1995;357(3):395–407.

    Article  CAS  PubMed  Google Scholar 

  74. Crepel F, Delhaye-Bouchaud N. Distribution of climbing fibres on cerebellar Purkinje cells in X-irradiated rats. An electrophysiological study. J Physiol. 1979;290(2):97–112.

    Article  CAS  PubMed  Google Scholar 

  75. Sugihara I, Bailly Y, Mariani J. Olivocerebellar climbing fibers in the granuloprival cerebellum: morphological study of individual axonal projections in the X-irradiated rat. J Neurosci. 2000;20(10):3745–60.

    Article  CAS  PubMed  Google Scholar 

  76. Woodward DJ, Hoffer BJ, Altman J. Physiological and pharmacological properties of Purkinje cells in rat cerebellum degranulated by postnatal x-irradiation. J Neurobiol. 1974;5(4):283–304.

    Article  CAS  PubMed  Google Scholar 

  77. Hashimoto K, Yoshida T, Sakimura K, Mishina M, Watanabe M, Kano M. Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum. Neuroscience. 2009;162(3):601–11.

    Article  CAS  PubMed  Google Scholar 

  78. Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, et al. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR δ2 mutant mice. Cell. 1995;81(2):245–52.

    Article  CAS  PubMed  Google Scholar 

  79. Kurihara H, Hashimoto K, Kano M, Takayama C, Sakimura K, Mishina M, et al. Impaired parallel fiber-->Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor δ2 subunit. J Neurosci. 1997;17(24):9613–23.

    Article  CAS  PubMed  Google Scholar 

  80. Lorenzetto E, Caselli L, Feng G, Yuan W, Nerbonne JM, Sanes JR, et al. Genetic perturbation of postsynaptic activity regulates synapse elimination in developing cerebellum. Proc Natl Acad Sci U S A. 2009;106(38):16475–80.

    Article  CAS  PubMed  Google Scholar 

  81. Andjus PR, Zhu L, Cesa R, Carulli D, Strata P. A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum. Neuroscience. 2003;121(3):563–72.

    Article  CAS  PubMed  Google Scholar 

  82. Hashizume M, et al. Disruption of cerebellar microzonal organization in GluD2 (GluRδ2) knockout mouse. Front Neural Circuits. 2013;7:130.

    Article  PubMed  Google Scholar 

  83. Batchelor AM, Madge DJ, Garthwaite J. Synaptic activation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience. 1994;63(4):911–5.

    Article  CAS  PubMed  Google Scholar 

  84. Finch EA, Augustine GJ. Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature. 1998;396(6713):753–6.

    Article  CAS  PubMed  Google Scholar 

  85. Takechi H, Eilers J, Konnerth A. A new class of synaptic response involving calcium release in dendritic spines. Nature. 1998;396(6713):757–60.

    Article  CAS  PubMed  Google Scholar 

  86. Dzubay JA, Otis TS. Climbing fiber activation of metabotropic glutamate receptors on cerebellar Purkinje neurons. Neuron. 2002;36(6):1159–67.

    Article  CAS  PubMed  Google Scholar 

  87. Hashimoto K, et al. Climbing fiber synapse elimination during postnatal cerebellar development requires signal transduction involving Gαq and phospholipase C β4. Prog Brain Res. 2000;124:31–48.

    Article  CAS  PubMed  Google Scholar 

  88. Ferraguti F, Crepaldi L, Nicoletti F. Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev. 2008;60(4):536–81.

    Article  CAS  PubMed  Google Scholar 

  89. De Zeeuw CI, et al. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron. 1998;20(3):495–508.

    Article  PubMed  Google Scholar 

  90. Mikuni T, Uesaka N, Okuno H, Hirai H, Deisseroth K, Bito H, et al. Arc/Arg3.1 is a postsynaptic mediator of activity-dependent synapse elimination in the developing cerebellum. Neuron. 2013;78(6):1024–35.

    Article  CAS  PubMed  Google Scholar 

  91. Yamazaki M, Fukaya M, Hashimoto K, Yamasaki M, Tsujita M, Itakura M, et al. TARPs γ2 and γ7 are essential for AMPA receptor expression in the cerebellum. Eur J Neurosci. 2010;31(12):2204–20.

    Article  PubMed  Google Scholar 

Download references

Funding

This work has been supported in part by Grants-in-Aid for Scientific Research (25000015 to M.K., 24220007 to M.W.) from JSPS, Japan, by Brain/MINDS from AMED, Japan, and by SRPBS from AMED, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanobu Kano.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kano, M., Watanabe, T., Uesaka, N. et al. Multiple Phases of Climbing Fiber Synapse Elimination in the Developing Cerebellum. Cerebellum 17, 722–734 (2018). https://doi.org/10.1007/s12311-018-0964-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-018-0964-z

Keywords

Navigation