Skip to main content
Log in

Intrinsic Connectivity Networks Within Cerebellum and Beyond in Eating Disorders

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Cerebellum seems to have a role both in feeding behavior and emotion regulation; therefore, it is a region that warrants further neuroimaging studies in eating disorders, severe conditions that determine a significant impairment in the physical and psychological domain. The aim of this study was to examine the cerebellum intrinsic connectivity during functional magnetic resonance imaging resting state in anorexia nervosa (AN), bulimia nervosa (BN), and healthy controls (CN). Resting state brain activity was decomposed into intrinsic connectivity networks (ICNs) using group spatial independent component analysis on the resting blood oxygenation level dependent time courses of 12 AN, 12 BN, and 10 CN. We extracted the cerebellar ICN and compared it between groups. Intrinsic connectivity within the cerebellar network showed some common alterations in eating disordered compared to healthy subjects (e.g., a greater connectivity with insulae, vermis, and paravermis and a lesser connectivity with parietal lobe); AN and BN patients were characterized by some peculiar alterations in connectivity patterns (e.g., greater connectivity with the insulae in AN compared to BN, greater connectivity with anterior cingulate cortex in BN compared to AN). Our data are consistent with the presence of different alterations in the cerebellar network in AN and BN patients that could be related to psychopathologic dimensions of eating disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hopyan T, Laughlin S, Dennis M. Emotions and their cognitive control in children with cerebellar tumors. JINS. 2010;16:1027–38.

    PubMed  Google Scholar 

  2. Parvizi J, Anderson SW, Martin CO, Damasio H, Damasio AR. Pathological laughter and crying: a link to the cerebellum. Brain. 2001;124:1708–19.

    Article  PubMed  CAS  Google Scholar 

  3. Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20:236–60.

    Article  PubMed  Google Scholar 

  4. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  5. Mahler P, Guastavino JM, Jacquart G, Strazielle C. An unexpected role of the cerebellum: involvement in nutritional organization. Physiol Behav. 1993;54:1063–7.

    Article  PubMed  CAS  Google Scholar 

  6. Zhu J-N, Wang J-J. The cerebellum in feeding control: possible function and mechanism. Cell Mol Neurobiol. 2008;28:469–78.

    Article  PubMed  Google Scholar 

  7. Saute JAM, da Silva ACF, Souza GN, Russo AD, Donis KC, Vedolin L, et al. Body mass index is inversely correlated with the expanded CAG repeat length in SCA3/MJD patients. Cerebellum. 2012;11:771–4.

    Article  PubMed  CAS  Google Scholar 

  8. Treasure J, Claudino AM, Zucker N. Eating disorders. Lancet. 2010;375:583–93.

    Article  PubMed  Google Scholar 

  9. Klump KL, Bulik CM, Kaye WH, Treasure J, Tyson E. Academy for eating disorders position paper: eating disorders are serious mental illnesses. Int J Eat Disord. 2009;42:97–103.

    Article  PubMed  Google Scholar 

  10. Van den Eynde F, Treasure J. Neuroimaging in eating disorders and obesity: implications for research. Child Adolesc Psychiatr Clin N Am. 2009;18:95–115.

    Article  PubMed  Google Scholar 

  11. Uher R, Murphy T, Brammer MJ, Dalgleish T, Phillips ML, Ng VW, et al. Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am J Psychiatry. 2004;161:1238–46.

    Article  PubMed  Google Scholar 

  12. Swayze VW, Andersen AE, Andreasen NC, Arndt S, Sato Y, Ziebell S. Brain tissue volume segmentation in patients with anorexia nervosa before and after weight normalization. Int J Eat Disord. 2003;33:33–44.

    Article  PubMed  Google Scholar 

  13. Boghi A, Sterpone S, Sales S, D’Agata F, Bradac GB, Zullo G, et al. In vivo evidence of global and focal brain alterations in anorexia nervosa. Psychiatry Res. 2011;192:154–9.

    Article  PubMed  Google Scholar 

  14. Husain MM, Black KJ, Doraiswamy PM, Shah SA, Rockwell WJ, Ellinwood EH, et al. Subcortical brain anatomy in anorexia and bulimia. Biol Psychiatry. 1992;31:735–8.

    Article  PubMed  CAS  Google Scholar 

  15. Inui A, Asakawa A, Kasuga M, Kamikawa S, Uemoto M, Watanabe T. Paracentral cortical atrophy in patients with eating disorders. Am J Med. 2002;112:681–3.

    Article  PubMed  Google Scholar 

  16. Pietrini F, Castellini G, Ricca V, Polito C, Pupi A, Faravelli C. Functional neuroimaging in anorexia nervosa: a clinical approach. Eur Psychiatry. 2011;26:176–82.

    Article  PubMed  CAS  Google Scholar 

  17. Suchan B, Busch M, Schulte D, Grönemeyer D, Grönermeyer D, Herpertz S, et al. Reduction of gray matter density in the extrastriate body area in women with anorexia nervosa. Behav Brain Res. 2010;206:63–7.

    Article  PubMed  Google Scholar 

  18. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.

    Article  PubMed  CAS  Google Scholar 

  19. Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, et al. Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci. 2011;23:4022–37.

    Article  PubMed  Google Scholar 

  20. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001;14:140–51.

    Article  PubMed  CAS  Google Scholar 

  21. McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, et al. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp. 1998;6:160–88.

    Article  PubMed  CAS  Google Scholar 

  22. Garner DM. Eating Disorder Inventory-2 professional manual. Psychological Assessment Resources; 1991.

  23. Garner DM, Olmstead MP, Polivy J. Development and validation of a multidimensional eating disorder inventory for anorexia nervosa and bulimia. Int J Eat Disord. 1983;2:15–34.

    Article  Google Scholar 

  24. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–71.

    Article  PubMed  CAS  Google Scholar 

  25. Zuo X-N, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP. Reliable intrinsic connectivity networks: test–retest evaluation using ICA and dual regression approach. Neuroimage. 2010;49:2163–77.

    Article  PubMed  Google Scholar 

  26. Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, et al. A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci. 2011;5:2.

    PubMed  Google Scholar 

  27. Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD. Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp. 2010;32:2075–95.

    Article  PubMed  Google Scholar 

  28. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage. 2002;15:870–8.

    Article  PubMed  Google Scholar 

  29. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    Article  PubMed  Google Scholar 

  30. Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Res Med. 1995;33:636–47.

    Article  CAS  Google Scholar 

  31. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.

    Article  PubMed  Google Scholar 

  32. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.

    PubMed  CAS  Google Scholar 

  33. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    Article  PubMed  Google Scholar 

  34. Konarski JZ, McIntyre RS, Grupp LA, Kennedy SH. Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci. 2005;30:178–86.

    PubMed  Google Scholar 

  35. Ichimiya T, Okubo Y, Suhara T, Sudo Y. Reduced volume of the cerebellar vermis in neuroleptic-naive schizophrenia. Biol Psychiatry. 2001;49:20–7.

    Article  PubMed  CAS  Google Scholar 

  36. Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM. Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry. 2008;23(4):289–99.

    Article  PubMed  Google Scholar 

  37. Womer FY, Kalmar JH, Wang F, Blumberg HP. A ventral prefrontal–amygdala neural system in bipolar disorder: a view from neuroimaging research. Acta Neuropsychiatr. 2009;21(6):228–38.

    Article  PubMed  Google Scholar 

  38. Fang P, Zeng LL, Shen H, Wang L, Li B, Liu L, et al. Increased cortical–limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging. PLoS One. 2012;7(9):e45972.

    Article  PubMed  CAS  Google Scholar 

  39. Drevets WC. Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med. 1998;49:341–61.

    Article  PubMed  CAS  Google Scholar 

  40. Sacchetti B, Scelfo B, Strata P. Cerebellum and emotional behavior. Neurosci. 2009;162:756–62.

    Article  CAS  Google Scholar 

  41. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.

    Article  PubMed  CAS  Google Scholar 

  42. Farrer C, Franck N, Georgieff N, Frith CD, Decety J, Jeannerod M. Modulating the experience of agency: a positron emission tomography study. Neuroimage. 2003;18:324–33.

    Article  PubMed  CAS  Google Scholar 

  43. Delvenne V, Lotstra F, Goldman S, Biver F, De Maertelaer V, Appelboom-Fondu J, et al. Brain hypometabolism of glucose in anorexia nervosa: a PET scan study. Biol Psychiatry. 1995;37:161–9.

    Article  PubMed  CAS  Google Scholar 

  44. Horne RL, Van Vactor JC, Emerson S. Disturbed body image in patients with eating disorders. Am J Psychiatry. 1991;148:211–5.

    PubMed  CAS  Google Scholar 

  45. Uher R, Murphy T, Friederich HC, Dalgleish T, Brammer MJ, Giampietro V, et al. Functional neuroanatomy of body shape perception in healthy and eating-disordered women. Biol Psychiatry. 2005;58(12):990–7.

    Article  PubMed  Google Scholar 

  46. Gaudio S, Nocchi F, Franchin T, Genovese E, Cannata V, Longo D, et al. Gray matter decrease distribution in the early stages of Anorexia Nervosa restrictive type in adolescents. Psychiatry Res. 2011;191(1):24–30.

    Article  PubMed  Google Scholar 

  47. Joos A, Hartmann A, Glauche V, Perlov E, Unterbrink T, Saum B, et al. Grey matter deficit in long-term recovered anorexia nervosa patients. Eur Eat Disord Rev. 2011;19(1):59–63.

    Article  PubMed  Google Scholar 

  48. Kaye W. Neurobiology of anorexia and bulimia nervosa. Physiol Behav. 2008;94:121–35.

    Article  PubMed  CAS  Google Scholar 

  49. Olson IR, Plotzker A, Ezzyat Y. The Enigmatic temporal pole: a review of findings on social and emotional processing. Brain. 2007;130:1718–31.

    Article  PubMed  Google Scholar 

  50. Liu L, Zeng L-L, Li Y, Ma Q, Li B, Shen H, et al. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder. PLoS One. 2012;7:e39516.

    Article  PubMed  CAS  Google Scholar 

  51. Brodal P, Bjaalie JG, Aas JE. Organization of cingulo-ponto-cerebellar connections in the cat. Anat Embryol (Berl). 1991;184(3):245–54.

    Article  CAS  Google Scholar 

  52. Schmahmann JD, Pandya DN. Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett. 1995;199(3):175–8.

    Article  PubMed  CAS  Google Scholar 

  53. Joos AAB, Saum B, Zeeck A, Perlov E, Glauche V, Hartmann A, et al. Frontocingular dysfunction in bulimia nervosa when confronted with disease-specific stimuli. Eur Eat Disord Rev. 2011. doi:10.1002/erv.1150.

    Google Scholar 

  54. Fassino S, Abbate-Daga G, Amianto F, Facchini F, Rovera GG. Eating psychopathology and personality in eating disorders. Epidemiol Psichiatr Soc. 2003;12:293–300.

    Article  PubMed  Google Scholar 

  55. Fassino S, Abbate-Daga G, Amianto F, Leombruni P, Boggio S, Rovera GG. Temperament and character profile of eating disorders: a controlled study with the Temperament and Character Inventory. Int J Eat Disord. 2002;32:412–25.

    Article  PubMed  Google Scholar 

  56. Lock J, Garrett A, Beenhakker J, Reiss AL. Aberrant brain activation during a response inhibition task in adolescent eating disorder subtypes. Am J Psychiatry. 2011;168(1):55–64.

    Article  PubMed  Google Scholar 

  57. Schienle A, Schafer A, Hermann A, Vaitl D. Binge-eating disorder: reward sensitivity and brain activation to images of food. Biol Psychiatry. 2009;65(8):654–61.

    Article  PubMed  Google Scholar 

  58. Marsh R, Steinglass JE, Gerber AJ, Graziano O’Leary K, Wang Z, Murphy D, et al. Deficient activity in the neural systems that mediate self-regulatory control in bulimia nervosa. Arch Gen Psychiatry. 2009;66(1):51–63.

    Article  PubMed  Google Scholar 

  59. Rolls ET. Taste, olfactory and food texture reward processing in the brain and the control of appetite. Proc Nutr Soc. 2012;71(4):488–501.

    Article  PubMed  Google Scholar 

  60. Craig AD. Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci. 2011;1225:72–82.

    Article  PubMed  Google Scholar 

  61. Wagner A, Aizenstein H, Mazurkewicz L, Fudge J, Frank GK, Putnam K, et al. Altered insula response to taste stimuli in individuals recovered from restricting-type anorexia nervosa. Neuropsychopharmacology. 2008;33:513–23.

    Article  PubMed  Google Scholar 

  62. Zhu J-N, Yung W-H, Kwok-Chong Chow B, Chan Y-S, Wang J-J. The cerebellar–hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic–visceral integration. Brain Res Rev. 2006;52:93–106.

    Article  PubMed  Google Scholar 

  63. Hoppenbrouwers SS, Schutter DJLG, Fitzgerald PB, Chen R, Daskalakis ZJ. The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: a review. Brain Res Rev. 2008;59:185–200.

    Article  PubMed  CAS  Google Scholar 

  64. Frank GK. Advances in the diagnosis of anorexia nervosa and bulimia nervosa using brain imaging. Expert Opin Med Diagn. 2012;6(3):235–44.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The present paper is a publication sponsored by the “Compagnia di San Paolo” Bank Foundation with the Grant “Bando Neuroscienze” (code 3929IT/PF 2008.2242) assigned in 2009 to Prof. Secondo Fassino and Dr. Federico Amianto.

Conflict of Interest

The authors declare that potential conflicts of interest do not exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. D’Agata.

Additional information

D’Agata and Amianto equally contributed to this work.

Electronic Supplementary Material

ESM 1

(DOC 2.12 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amianto, F., D’Agata, F., Lavagnino, L. et al. Intrinsic Connectivity Networks Within Cerebellum and Beyond in Eating Disorders. Cerebellum 12, 623–631 (2013). https://doi.org/10.1007/s12311-013-0471-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0471-1

Keywords

Navigation