Skip to main content
Log in

Diffusion and Extrusion Shape Standing Calcium Gradients During Ongoing Parallel Fiber Activity in Dendrites of Purkinje Neurons

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Synaptically induced calcium transients in dendrites of Purkinje neurons (PNs) play a key role in the induction of plasticity in the cerebellar cortex (Ito, Physiol Rev 81:1143–1195, 2001). Long-term depression at parallel fiber–PN synapses can be induced by stimulation paradigms that are associated with long-lasting (>1 min) calcium signals. These signals remain strictly localized (Eilers et al., Learn Mem 3:159–168, 1997), an observation that was rather unexpected, given the high concentration of the mobile endogenous calcium-binding proteins parvalbumin and calbindin in PNs (Fierro and Llano, J Physiol (Lond) 496:617–625, 1996; Kosaka et al., Exp Brain Res 93:483–491, 1993). By combining two-photon calcium imaging experiments in acute slices with numerical computer simulations, we found that significant calcium diffusion out of active branches indeed takes places. It is outweighed, however, by rapid and powerful calcium extrusion along the dendritic shaft. The close interplay of diffusion and extrusion defines the spread of calcium between active and inactive dendritic branches, forming a steep gradient in calcium with drop ranges of ~13 μm (interquartile range, 10–18 μm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev. 2001;81:1143–95.

    PubMed  CAS  Google Scholar 

  2. Eilers J, Takechi H, Finch EA, Augustine GJ, Konnerth A. Local dendritic Ca2+ signaling induces cerebellar LTD. Learn Mem. 1997;3:159–68.

    Article  Google Scholar 

  3. Fierro L, Llano I. High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. J Physiol Lond. 1996;496:617–25.

    PubMed  CAS  Google Scholar 

  4. Kosaka T, Kosaka K, Nakayama T, Hunziker W, Heizmann CW. Axons and axon terminals of cerebellar Purkinje cells and basket cells have higher levels of parvalbumin immunoreactivity than somata and dendrites: quantitative analysis by immunogold labeling. Exp Brain Res. 1993;93:483–91.

    Article  PubMed  CAS  Google Scholar 

  5. Hartmann J, Konnerth A. Determinants of postsynaptic Ca2+ signaling in Purkinje neurons. Cell Calcium. 2005;37:459–66.

    Article  PubMed  CAS  Google Scholar 

  6. Augustine GJ, Santamaria F, Tanaka K. Local calcium signaling in neurons. Neuron. 2003;40:331–46.

    Article  PubMed  CAS  Google Scholar 

  7. Sullivan MR, Nimmerjahn A, Sarkisov DV, Helmchen F, Wang SS. In vivo calcium imaging of circuit activity in cerebellar cortex. J Neurophysiol. 2005;94:1636–44.

    Article  PubMed  CAS  Google Scholar 

  8. Denk W, Sugimori M, Llinás R. Two types of calcium responses limited to single spines in cerebellar Purkinje cells. Proc Natl Acad Sci USA. 1995;92:8279–82.

    Article  PubMed  CAS  Google Scholar 

  9. Eilers J, Augustine GJ, Konnerth A. Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature. 1995;373:155–8.

    Article  PubMed  CAS  Google Scholar 

  10. Hartell NA. Strong activation of parallel fibers produce localized calcium transients and a form of LTD that spreads to distant synapses. Neuron. 1996;16:601–10.

    Article  PubMed  CAS  Google Scholar 

  11. Ito M, Kano M. Long-lasting depression of parallel fiber–Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33:253–8.

    Article  PubMed  CAS  Google Scholar 

  12. Wang SS-H, Denk W, Häusser M. Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci. 2000;3:1266–73.

    Article  PubMed  CAS  Google Scholar 

  13. Tanaka K, Khiroug L, Santamaria F, Doi T, Ogasawara H, Ellis-Davies GCR, et al. Ca2+ requirements for cerebellar long-term synaptic depression: role for a postsynaptic leaky integrator. Neuron. 2007;54:787–800.

    Article  PubMed  CAS  Google Scholar 

  14. Wilms CD, Schmidt H, Eilers J. Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis. Cell Calcium. 2006;40:73–9.

    Article  PubMed  CAS  Google Scholar 

  15. Gabso M, Neher E, Spira ME. Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron. 1997;18:473–81.

    Article  PubMed  CAS  Google Scholar 

  16. Wang SSH, Khiroug L, Augustine GJ. Quantification of spread of cerebellar long-term depression with chemical two-photon uncaging of glutamate. Proc Natl Acad Sci USA. 2000;97:8635–40.

    Article  PubMed  CAS  Google Scholar 

  17. Allbritton NL, Meyer T, Stryer L. Range of messenger action of calcium ion and inositol 1, 4, 5-trisphosphate. Science. 1992;258:1812–5.

    Article  PubMed  CAS  Google Scholar 

  18. Neher E. The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology. 1995;34:1423–42.

    Article  PubMed  CAS  Google Scholar 

  19. Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M. Ataxia and altered dendritic calcium signalling in mice carrying a targeted nullmutation of the calbindin D28k gene. Proc Natl Acad Sci USA. 1997;94:1488–93.

    Article  PubMed  CAS  Google Scholar 

  20. Maeda H, Ellis-Davies GC, Ito K, Miyashita Y, Kasai H. Supralinear Ca2+ signaling by cooperative and mobile Ca2+ buffering in Purkinje neurons. Neuron. 1999;24:989–1002.

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt H, Kunerth S, Wilms C, Strotmann R, Eilers J. Spino-dendritic crosstalk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins. J Physiol Lond. 2007;581:619–29.

    Article  PubMed  Google Scholar 

  22. Schmidt H, Stiefel K, Racay P, Schwaller B, Eilers J. Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. J Physiol Lond. 2003;551:13–32.

    Article  PubMed  CAS  Google Scholar 

  23. Rexhausen U. Bestimmung der Diffusionseigenschaften von Fluoreszenzfarbstoffen in verzweigten Nervenzellen unter Verwendung eines rechnergesteuerten Bildverarbeitungssystems. Göttingen1992.

  24. Finch EA, Augustine GJ. Local calcium signalling by inositol-1, 4, 5-trisphosphate in Purkinje cell dendrites. Nature. 1998;396:753–6.

    Article  PubMed  CAS  Google Scholar 

  25. Takechi H, Eilers J, Konnerth A. A new class of synaptic responses involving calcium release in dendritic spines. Nature. 1998;396:757–60.

    Article  PubMed  CAS  Google Scholar 

  26. Konnerth A, Llano I, Armstrong CM. Synaptic currents in cerebellar Purkinje cells. Proc Natl Acad Sci USA. 1990;87:2662–5.

    Article  PubMed  CAS  Google Scholar 

  27. Chono K, Takagi H, Koyama S, Suzuki H, Ito E. A cell model study of calcium influx mechanism regulated by calcium-dependent potassium channels in Purkinje cell dendrites. J Neurosci Methods. 2003;129:115–27.

    Article  PubMed  CAS  Google Scholar 

  28. Berna-Erro A, Braun A, Kraft R, Kleinschnitz C, Schuhmann MK, Stegner D, et al. STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. Science Signaling. 2009;2:ra67.

    Article  PubMed  Google Scholar 

  29. Ito M. The cerebellum and neuronal control. New York: Raven; 1984.

    Google Scholar 

  30. Zador A, Koch C. Linearized models of calcium dynamics: formal equivalence to the cable equation. J Neurosci. 1994;14:4705–15.

    PubMed  CAS  Google Scholar 

  31. Markram H, Roth A, Helmchen F. Competitive calcium binding: implications for dendritic calcium signaling. J Comput Neurosci. 1998;5:331–48.

    Article  PubMed  CAS  Google Scholar 

  32. Richards FJ. A flexible growth function for empirical use. J Exp Bot. 1959;10:290–300.

    Article  Google Scholar 

  33. Iacopino AM, Christakos S. Corticosterone regulates calbindin-D28k messenger-RNA and protein-levels in rat hippocampus. J Biol Chem. 1990;265:10177–80.

    PubMed  CAS  Google Scholar 

  34. Schmidt H, Schwaller B, Eilers J. Calbindin D28k targets myo-inositol monophosphatase in spines and dendrites of cerebellar Purkinje neurons. Proc Natl Acad Sci USA. 2005;102:5850–5.

    Article  PubMed  CAS  Google Scholar 

  35. Schmidt H, Brown EB, Schwaller B, Eilers J. Diffusional mobility of parvalbumin in spiny dendrites of cerebellar Purkinje neurons quantified by fluorescence recovery after photobleaching. Biophys J. 2003;84:2599–608.

    Article  PubMed  CAS  Google Scholar 

  36. Eberhard M, Erne P. Calcium and magnesium binding to rat parvalbumin. Eur J Biochem. 1994;222:21–6.

    Article  PubMed  CAS  Google Scholar 

  37. Richardson A, Taylor CW. Effects of Ca2+ chelators on purified inositol 1, 4, 5-trisphosphate (InsP3) receptors and InsP3-stimulated Ca2+ mobilization. J Biol Chem. 1993;268:11528–33.

    PubMed  CAS  Google Scholar 

  38. Harvey RJ, Napper RM. Quantitative studies on the mammalian cerebellum. Prog Neurobiol. 1991;36:437–63.

    Article  PubMed  CAS  Google Scholar 

  39. Goldberg JH, Yuste R, Tamas G. Ca2+ imaging of mouse neocortical interneurone dendrites: contribution of Ca2+-permeable AMPA and NMDA receptors to subthreshold Ca2+ dynamics. J Physiol Lond. 2003;551:67–78.

    Article  PubMed  CAS  Google Scholar 

  40. Miyata M, Finch EA, Khiroug L, Hashimoto K, Hayasaka S, Oda SI, et al. Local calcium release in dendritic spines required for long-term synaptic depression. Neuron. 2000;28:233–44.

    Article  PubMed  CAS  Google Scholar 

  41. Santamaria F, Wils S, De Schutter E, Augustine GJ. Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron. 2006;52:635–48.

    Article  PubMed  CAS  Google Scholar 

  42. Soler-Llavina GJ, Sabatini BL. Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat Neurosci. 2006;9:798–806.

    Article  PubMed  CAS  Google Scholar 

  43. Wagner J, Keizer J. Effects of rapid bufers on Ca2+ diffusion and Ca2+ oscillations. Biophys J. 1994;67:447–56.

    Article  PubMed  CAS  Google Scholar 

  44. Nägerl UV, Novo D, Mody I, Vergara JL. Binding kinetics of calbindin-D28k determined by flash photolysis of caged Ca2+. Biophys J. 2000;79:3009–18.

    Article  PubMed  Google Scholar 

  45. Fierro L, DiPolo R, Llano I. Intracellular calcium clearance in Purkinje cell somata from rat cerebellar slices. J Physiol Lond. 1998;510:499–512.

    Article  PubMed  CAS  Google Scholar 

  46. Burette A, Weinberg RJ. Perisynaptic organization of plasma membrane calcium pumps in cerebellar cortex. J Comp Neurol. 2007;500:1127–35.

    Article  PubMed  CAS  Google Scholar 

  47. Sabatini BL, Oertner TG, Svoboda K. The life cycle of Ca2+ ions in dendritic spines. Neuron. 2002;33:439–52.

    Article  PubMed  CAS  Google Scholar 

  48. Finch EA, Turner TJ, Goldin SM. Calcium as a coagonist of inositol 1, 4, 5-trisphosphate-induced calcium release. Science. 1991;252:443–6.

    Article  PubMed  CAS  Google Scholar 

  49. Eberhard M, Erne P. Calcium binding to fluorescent calcium indicators: calcium green, calcium orange and calcium crimson. Biochem Biophys Res Commun. 1991;180:209–15.

    Article  PubMed  CAS  Google Scholar 

  50. Naraghi M. T-jump study of calcium binding kinetics of calcium chelators. Cell Calcium. 1997;22:255–68.

    Article  PubMed  CAS  Google Scholar 

  51. Lee S-H, Schwaller B, Neher E. Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites. J Physiol Lond. 2000;525:419–32.

    Article  PubMed  CAS  Google Scholar 

  52. Holthoff K, Tsay D, Yuste R. Calcium dynamics of spines depend on their dendritic location. Neuron. 2002;33:425–37.

    Article  PubMed  CAS  Google Scholar 

  53. Berggård T, Miron S, Önnerfjord P, Thulin E, Åkerfeldt KS, Enghild JJ, et al. Calbindin D28k exhibits properties characteristic of a Ca2+ sensor. J Biol Chem. 2002;277:16662–72.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Klaus Stiefel for help in preliminary simulations and Gudrun Bethge for technical assistance.

Conflict of Interest Statement

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Eilers.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Fig. S1

Localization of the Ca2+ plateaus with respect to branchpoints. The distance of the 50% value of the Ca2+ plateau to the nearest distal and proximal branchpoints (circles, connected by a straight line) plotted for each individual experiment. The data are spatially normalized to the points of inflexion of the logistic fit to the data, indicated by the dashed line in the scheme on the top. The left gray segment denotes the active dendritic compartment, the right segment the inactive one (cf. inset to Fig. 2d). The median of the measured drop ranges is indicated by the shading and the bracket. Note that in distal dendrites of PNs, branching occurs approximately every 10 μm (Ito M. The cerebellum and neuronal control. New York: Raven Press; 1984; cf. figure 1b). (PDF 466 kb)

Fig. S2

Influence of a side branch on the steady-state Ca2+ gradient. a Simulation of the drop in Ca2+ between the 30-μm long active dendritic segment coupled to the 50 μm long inactive segment (horizontal segments in the schematic illustration in the inset; 2 μm diameter) and to an additional 30-μm long inactive side branch (vertical segment) located at the center of the active segment. The diameter of the side branch was varied from 0.2 to 1.0 and 2.0 μm diameter (dotted, dashed, and broken line, respectively). The solid line represents the simulation in the absence of the side branch, corresponding to the solid lines in the one-dimensional simulations shown in Figs. 2d, 3a, and 4a. b Same as in a but with setting the side branch to “active” (i.e., to harboring a plateau [Ca2+] i of 295 nM). cf Same as in a and b but for a side branch connected to the intersection between the primary active and inactive dendritic segments (c and d) or to the inactive segment (15 μm distant from the horizontal intersection; e and f) (PDF 380 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, H., Arendt, O. & Eilers, J. Diffusion and Extrusion Shape Standing Calcium Gradients During Ongoing Parallel Fiber Activity in Dendrites of Purkinje Neurons. Cerebellum 11, 694–705 (2012). https://doi.org/10.1007/s12311-010-0246-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0246-x

Keywords

Navigation