Skip to main content

Advertisement

Log in

Rabies Virus Pseudotyped with CVS-N2C Glycoprotein as a Powerful Tool for Retrograde Neuronal Network Tracing

Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Efficient viral vectors for mapping and manipulating long-projection neuronal circuits are crucial in structural and functional studies of the brain. The SAD strain rabies virus with the glycoprotein gene deleted pseudotyped with the N2C glycoprotein (SAD-RV(ΔG)-N2C(G)) shows strong neuro-tropism in cell culture, but its in vivo efficiency for retrograde gene transduction and neuro-tropism have not been systematically characterized. We compared these features in different mouse brain regions for SAD-RV-N2C(G) and two other widely-used retrograde tracers, SAD-RV(ΔG)-B19(G) and rAAV2-retro. We found that SAD-RV(ΔG)-N2C(G) enhanced the infection efficiency of long-projecting neurons by ~10 times but with very similar neuro-tropism, compared with SAD-RV(ΔG)-B19(G). On the other hand, SAD-RV(ΔG)-N2C(G) had an infection efficiency comparable with rAAV2-retro, but a more restricted diffusion range, and broader tropism to different types and regions of long-projecting neuronal populations. These results demonstrate that SAD-RV(ΔG)-N2C(G) can serve as an effective retrograde vector for studying neuronal circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abeles M. Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press, 1991.

  2. Tomioka R, Okamoto K, Furuta T, Fujiyama F, Iwasato T, Yanagawa Y, et al. Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex. Eur J Neurosci 2005, 21: 1587–1600.

    PubMed  Google Scholar 

  3. Gayoso J, Castro A, Anadon R, Manso MJ. Crypt cells of the zebrafish Danio rerio mainly project to the dorsomedial glomerular field of the olfactory bulb. Chem Senses 2012, 37: 357–369.

    CAS  PubMed  Google Scholar 

  4. Huang ZJ. Toward a genetic dissection of cortical circuits in the mouse. Neuron 2014, 83: 1284–1302.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Miller MW, Vogt BA. Direct connections of rat visual cortex with sensory, motor, and association cortices. J Comp Neurol 1984, 226: 184–202.

    CAS  PubMed  Google Scholar 

  6. Osakada F, Callaway EM. Design and generation of recombinant rabies virus vectors. Nat Protoc 2013, 8: 1583–1601.

    PubMed  PubMed Central  Google Scholar 

  7. Su YT, Gu MY, Chu X, Feng X, Yu YQ. Whole-brain mapping of direct inputs to and axonal projections from GABAergic neurons in the parafacial zone. Neurosci Bull 2018, 34: 485–496.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Roselli F, Caroni P. A circuit mechanism for neurodegeneration. Cell 2012, 151: 250–252.

    CAS  PubMed  Google Scholar 

  9. Rubinov M, Bullmore E. Fledgling pathoconnectomics of psychiatric disorders. Trends Cogn Sci 2013, 17: 641–647.

    PubMed  Google Scholar 

  10. Zhai S, Tanimura A, Graves SM, Shen W, Surmeier DJ. Striatal synapses, circuits, and Parkinson’s disease. Curr Opin Neurobiol 2017, 48: 9–16.

    PubMed  PubMed Central  Google Scholar 

  11. Fullard ME, Morley JF, Duda JE. Olfactory dysfunction as an early biomarker in Parkinson’s disease. Neurosci Bull 2017, 33: 515–525.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gratwicke J, Jahanshahi M, Foltynie T. Parkinson’s disease dementia: a neural networks perspective. Brain 2015, 138: 1454–1476.

    PubMed  PubMed Central  Google Scholar 

  13. Taverna S, Ilijic E, Surmeier DJ. Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. J Neurosci 2008, 28: 5504–5512.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 2012, 149: 708–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Milnerwood AJ, Raymond LA. Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci 2010, 33: 513–523.

    CAS  PubMed  Google Scholar 

  16. Vercelli A, Repici M, Garbossa D, Grimaldi A. Recent techniques for tracing pathways in the central nervous system of developing and adult mammals. Brain Res Bull 2000, 51: 11–28.

    CAS  PubMed  Google Scholar 

  17. Katz LC. Local circuitry of identified projection neurons in cat visual cortex brain slices. J Neurosci 1987, 7: 1223–1249.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stoeckel K, Schwab M, Thoenen H. Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin. Brain Res 1977, 132: 273–285.

    CAS  PubMed  Google Scholar 

  19. Conte WL, Kamishina H, Reep RL. Multiple neuroanatomical tract-tracing using fluorescent Alexa Fluor conjugates of cholera toxin subunit B in rats. Nat Protoc 2009, 4: 1157–1166.

    CAS  PubMed  Google Scholar 

  20. Katz L, Burkhalter A, Dreyer W. Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 1984, 310: 498.

    CAS  PubMed  Google Scholar 

  21. Ni RJ, Luo PH, Shu YM, Chen JT, Zhou JN. Whole-brain mapping of afferent projections to the bed nucleus of the stria terminalis in tree shrews. Neuroscience 2016, 333: 162–180.

    CAS  PubMed  Google Scholar 

  22. Gabriele ML, Smoot JE, Jiang H, Stein BE, McHaffie JG. Early establishment of adult-like nigrotectal architecture in the neonatal cat: a double-labeling study using carbocyanine dyes. Neuroscience 2006, 137: 1309–1319.

    CAS  PubMed  Google Scholar 

  23. Ugolini G. Rabies virus as a transneuronal tracer of neuronal connections. Adv Virus Res 2011, 79: 165–202.

    CAS  PubMed  Google Scholar 

  24. Callaway EM, Luo L. Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J Neurosci 2015, 35: 8979–8985.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wickersham IR, Finke S, Conzelmann KK, Callaway EM. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 2007, 4: 47–49.

    CAS  PubMed  Google Scholar 

  26. Kelly RM, Strick PL. Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 2000, 103: 63–71.

    CAS  PubMed  Google Scholar 

  27. Ugolini G, Kuypers H, Simmons A. Retrograde transneuronal transfer of herpes simplex virus type 1 (HSV 1) from motoneurones. Brain Res 1987, 422: 242–256.

    CAS  PubMed  Google Scholar 

  28. Xu C, Krabbe S, Grundemann J, Botta P, Fadok JP, Osakada F, et al. Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. Cell 2016, 167: 961–972 e916.

    Google Scholar 

  29. Cuchet D, Potel C, Thomas J, Epstein AL. HSV-1 amplicon vectors: a promising and versatile tool for gene delivery. Expert Opin Biol Ther 2007, 7: 975–995.

    CAS  PubMed  Google Scholar 

  30. Lilley CE, Groutsi F, Han Z, Palmer JA, Anderson PN, Latchman DS, et al. Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo. J Virol 2001, 75: 4343–4356.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Frampton AR, Jr., Goins WF, Nakano K, Burton EA, Glorioso JC. HSV trafficking and development of gene therapy vectors with applications in the nervous system. Gene Ther 2005, 12: 891–901.

    CAS  PubMed  Google Scholar 

  32. Soudais C, Laplace-Builhe C, Kissa K, Kremer EJ. Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB J 2001, 15: 2283–2285.

    CAS  PubMed  Google Scholar 

  33. Junyent F, Kremer EJ. CAV-2–why a canine virus is a neurobiologist’s best friend. Curr Opin Pharmacol 2015, 24: 86–93.

    CAS  PubMed  Google Scholar 

  34. Li SJ, Vaughan A, Sturgill JF, Kepecs A. A viral receptor complementation strategy to overcome CAV-2 tropism for efficient retrograde targeting of neurons. Neuron 2018, 98: 905–917 e905.

    Google Scholar 

  35. Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 2016, 92: 372–382.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cronin J, Zhang XY, Reiser J. Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 2005, 5: 387–398.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kato S, Kobayashi K, Inoue K, Kuramochi M, Okada T, Yaginuma H, et al. A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 2011, 22: 197–206.

    CAS  PubMed  Google Scholar 

  38. Hirano M, Kato S, Kobayashi K, Okada T, Yaginuma H, Kobayashi K. Highly efficient retrograde gene transfer into motor neurons by a lentiviral vector pseudotyped with fusion glycoprotein. PLoS One 2013, 8: e75896.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Coulon P, Derbin C, Kucera P, Lafay F, Prehaud C, Flamand A. Invasion of the peripheral nervous systems of adult mice by the CVS strain of rabies virus and its avirulent derivative AvO1. J Virol 1989, 63: 3550–3554.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chatterjee S, Sullivan HA, MacLennan BJ, Xu R, Hou Y, Lavin TK, et al. Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nat Neurosci 2018, 21: 638–646.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Senn V, Wolff SB, Herry C, Grenier F, Ehrlich I, Grundemann J, et al. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 2014, 81: 428–437.

    CAS  PubMed  Google Scholar 

  42. Follenzi A, Santambrogio L, Annoni A. Immune responses to lentiviral vectors. Curr Gene Ther 2007, 7: 306–315.

    CAS  PubMed  Google Scholar 

  43. Themis M, Waddington SN, Schmidt M, Von Kalle C, Wang Y, Al-Allaf F, et al. Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol Ther 2005, 12: 763–771.

    CAS  PubMed  Google Scholar 

  44. Ciabatti E, Gonzalez-Rueda A, Mariotti L, Morgese F, Tripodi M. Life-long genetic and functional access to neural circuits using self-inactivating rabies virus. Cell 2017, 170: 382–392 e314.

    Google Scholar 

  45. Hagendorf N, Conzelmann KK. Pseudotyping of G-gene-deficient rabies virus. Cold Spring Harb Protoc 2015, 2015: pdb prot089417.

  46. Reardon TR, Murray AJ, Turi GF, Wirblich C, Croce KR, Schnell MJ, et al. Rabies virus CVS-N2c(DeltaG) strain enhances retrograde synaptic transfer and neuronal viability. Neuron 2016, 89: 711–724.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 2003, 467: 60–79.

    CAS  PubMed  Google Scholar 

  48. Osakada F, Mori T, Cetin AH, Marshel JH, Virgen B, Callaway EM. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 2011, 71: 617–631.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Capelli P, Pivetta C, Soledad Esposito M, Arber S. Locomotor speed control circuits in the caudal brainstem. Nature 2017, 551: 373–377.

    CAS  PubMed  Google Scholar 

  50. Yang H, de Jong JW, Tak Y, Peck J, Bateup HS, Lammel S. Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations. Neuron 2018, 97: 434–449 e434.

    Google Scholar 

  51. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 2012, 74: 858–873.

    CAS  PubMed  Google Scholar 

  52. Ogawa SK, Cohen JY, Hwang D, Uchida N, Watabe-Uchida M. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep 2014, 8: 1105–1118.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Watson C, Paxinos G, Puelles L. The mouse nervous system. Academic Press, 2012.

  54. Isaacson R. The Hippocampus: Volume 1: Structure and Development. Springer Science & Business Media, 2012.

  55. Vivar C, Potter MC, Choi J, Lee JY, Stringer TP, Callaway EM, et al. Monosynaptic inputs to new neurons in the dentate gyrus. Nat Commun 2012, 3: 1107.

    PubMed  Google Scholar 

  56. Semba K. Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res 2000, 115: 117–141.

    CAS  PubMed  Google Scholar 

  57. Sun Y, Grieco SF, Holmes TC, Xu X. Local and long-range circuit connections to hilar mossy cells in the dentate gyrus. eNeuro 2017, 4.

  58. Bui AD, Nguyen TM, Limouse C, Kim HK, Szabo GG, Felong S, et al. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory. Science 2018, 359: 787–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 2007, 8: 427.

    CAS  PubMed  Google Scholar 

  60. Lodato S, Rouaux C, Quast KB, Jantrachotechatchawan C, Studer M, Hensch TK, et al. Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex. Neuron 2011, 69: 763–779.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bezaire MJ, Soltesz I. Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 2013, 23: 751–785.

    PubMed  PubMed Central  Google Scholar 

  62. Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 2000, 287: 2262–2267.

    CAS  PubMed  Google Scholar 

  63. Miller SG, Kennedy MB. Distinct forebrain and cerebellar isozymes of type II Ca2+/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction. J Biol Chem 1985, 260: 9039–9046.

    CAS  PubMed  Google Scholar 

  64. Morimoto K, Hooper DC, Carbaugh H, Fu ZF, Koprowski H, Dietzschold B. Rabies virus quasispecies: implications for pathogenesis. Proc Natl Acad Sci U S A 1998, 95: 3152–3156.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim EJ, Jacobs MW, Ito-Cole T, Callaway EM. Improved monosynaptic neural circuit tracing using engineered rabies virus glycoproteins. Cell Rep 2016, 15: 692–699.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 2008, 21: 583–593.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ayuso E, Mingozzi F, Bosch F. Production, purification and characterization of adeno-associated vectors. Curr Gene Ther 2010, 10: 423–436.

    CAS  PubMed  Google Scholar 

  68. Bezaire MJ, Soltesz I. Quantitative assessment of CA1 local circuits: knowledge base for interneuron‐pyramidal cell connectivity. Hippocampus 2013, 23: 751–785.

    PubMed  PubMed Central  Google Scholar 

  69. Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 2015, 162: 622–634.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ogawa SK, Watabe-Uchida M. Organization of dopamine and serotonin system: Anatomical and functional mapping of monosynaptic inputs using rabies virus. Pharmacol Biochem Behav 2018, 174: 9–22.

    CAS  PubMed  Google Scholar 

  71. Albisetti GW, Ghanem A, Foster E, Conzelmann KK, Zeilhofer HU, Wildner H. Identification of two classes of somatosensory neurons that display resistance to retrograde infection by rabies virus. J Neurosci 2017, 37: 10358–10371.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Yue Liu and Aolin Cai from Wuhan Institute of Physics and Mathematics for help with data analysis; Yanqiu Li, Yuanli Liao, and Pingping An from Wuhan Institute of Physics and Mathematics for maintaining and genotyping the GAD 67-GFP mice, and Lingling Xu from Wuhan Institute of Physics and Mathematics for capturing confocal images. This work was supported by the National Basic Research Program (973 Program) of China (2015CB755601), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB32030200), the National Natural Science Foundation of China (31771156, 81661148053, 91632303, 31800885, 31500868, 31671120 and 91732304), and the China Postdoctoral Science Foundation (2019M653118 and 2018M632946).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijian Zhang or Fuqiang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Lin, K., Liu, Q. et al. Rabies Virus Pseudotyped with CVS-N2C Glycoprotein as a Powerful Tool for Retrograde Neuronal Network Tracing. Neurosci. Bull. 36, 202–216 (2020). https://doi.org/10.1007/s12264-019-00423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-019-00423-3

Keywords

Navigation