Skip to main content

Advertisement

Log in

Functional neuroimaging of extraversion-introversion

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography have provided an unprecedented neurobiological perspective for research on personality traits. Evidence from task-related neuroimaging has shown that extraversion is associated with activations in regions of the anterior cingulate cortex, dorsolateral prefrontal cortex, middle temporal gyrus and the amygdala. Currently, resting-state neuroimaging is being widely used in cognitive neuroscience. Initial exploration of extraversion has revealed correlations with the medial prefrontal cortex, anterior cingulate cortex, insular cortex, and the precuneus. Recent research work has indicated that the long-range temporal dependence of the resting-state spontaneous oscillation has high test-retest reliability. Moreover, the long-range temporal dependence of the resting-state networks is highly correlated with personality traits, and this can be used for the prediction of extraversion. As the long-range temporal dependence reflects real-time information updating in individuals, this method may provide a new approach to research on personality traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Eysenck HJ, Eysenck SBG. Manual for the Eysenck Personality Questionnaire:(EPQ-R Adult). Educational Industrial Testing Service, 1994.

    Google Scholar 

  2. Yamasue H, Abe O, Suga M, Yamada H, Inoue H, Tochigi M, et al. Gender-common and -specific neuroanatomical basis of human anxiety-related personality traits. Cereb Cortex 2008, 18: 46–52.

    Article  PubMed  Google Scholar 

  3. McAdams DP, Pals JL. A new big five. Am Psychol 2006, 61: 204–217.

    Article  PubMed  Google Scholar 

  4. DeYoung CG, Hirsh JB, Shane MS, Papademetris X, Rajeevan N, Gray JR. Testing predictions from personality neuroscience. Psychol Sci 2010, 21: 820.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Adelstein JS, Shehzad Z, Mennes M, De Young CG, Zuo XN, Kelly C, et al. Personality is reflected in the brain’s intrinsic functional architecture. PLoS One 2011, 6: e27633.

    Article  Google Scholar 

  6. Zuo N, Cheng J, Jiang T. Diffusion magnetic resonance imaging for Brainnetome: a critical review. Neurosci Bull 2012, 28: 375–388.

    Article  PubMed  Google Scholar 

  7. Song M, Jiang T. A review of functional magnetic resonance imaging for Brainnetome. Neurosci Bull 2012, 28: 389–398.

    Article  CAS  PubMed  Google Scholar 

  8. Eisenberger NI, Lieberman MD, Satpute AB. Personality from a controlled processing perspective: an fMRI study of neuroticism, extraversion, and self-consciousness. Cogn Affect Behav Neurosci 2005, 5: 169–181.

    Article  PubMed  Google Scholar 

  9. Kumari V, ffytche DH, Williams SC, Gray JA. Personality predicts brain responses to cognitive demands. J Neurosci 2004, 24: 10636–10641.

    Article  CAS  PubMed  Google Scholar 

  10. Suslow T, Kugel H, Reber H, Bauer J, Dannlowski U, Kersting A, et al. Automatic brain response to facial emotion as a function of implicitly and explicitly measured extraversion. Neuroscience 2010, 167: 111–123.

    Article  CAS  PubMed  Google Scholar 

  11. Wei L, Duan X, Yang Y, Liao W, Gao Q, Ding JR, et al. The synchronization of spontaneous BOLD activity predicts extraversion and neuroticism. Brain Res 2011, 1419: 68–75.

    Article  CAS  PubMed  Google Scholar 

  12. Lei X, Zhao Z, Chen H. Extraversion is encoded by scalefree dynamics of default mode network. Neuroimage 2013, 74: 52–57.

    Article  PubMed  Google Scholar 

  13. Sampaio A, Soares JM, Coutinho J, Sousa N, Goncalves OF. The Big Five default brain: functional evidence. Brain Struct Funct 2014, 219: 1913–1922.

    Article  PubMed  Google Scholar 

  14. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 2009, 106: 13040–13045.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A. Scale-free and multifractal time dynamics of fMRI Signals during rest and task. Front Physiol 2012, 3: 186.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. He BJ, Zempel JM, Snyder AZ, Raichle ME. The temporal structures and functional significance of scale-free brain activity. Neuron 2010, 66: 353–369.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. He BJ. Scale-free properties of the functional magnetic resonance imaging signal during rest and task. J Neurosci 2011, 31: 13786–13795.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Haas BW, Omura K, Amin Z, Constable RT, Canli T. Functional connectivity with the anterior cingulate is associated with extraversion during the emotional Stroop task. Soc Neurosci 2006, 1: 16–24.

    Article  PubMed  Google Scholar 

  19. Schaefer M, Knuth M, Rumpel F. Striatal response to favorite brands as a function of neuroticism and extraversion. Brain Res 2011, 1425: 83–89.

    Article  CAS  PubMed  Google Scholar 

  20. Fruhholz S, Prinz M, Herrmann M. Affect-related personality traits and contextual interference processing during perception of facial affect. Neurosci Lett 2010, 469: 260–264.

    Article  PubMed  Google Scholar 

  21. Farde L, Gustavsson JP, Jonsson E. D2 dopamine rece ptors and personality traits. Nature 1997, 385: 590.

    Article  CAS  PubMed  Google Scholar 

  22. Martin SB, Covell DJ, Joseph JE, Chebrolu H, Smith CD, Kelly TH, et al. Human experience seeking correlates with hippocampus volume: convergent evidence from manual tracing and voxel-based morphometry. Neuropsychologia 2007, 45: 2874–2881.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Chavanon M-L, Wacker J, Leue A, Stemmler G. Evidence for a dopaminergic link between working memory and agentic extraversion: An analysis of load-related changes in EEG alpha 1 activity. Biol Psychol 2007, 74: 46–59.

    Article  PubMed  Google Scholar 

  24. Chi SE, Park CB, Lim SL, Park EH, Lee YH, Lee KH, et al. EEG and personality dimensions: A consideration based on the brain oscillatory systems. Pers Individ Dif 2005, 39: 669–681.

    Article  Google Scholar 

  25. Matthews G, Amelang M. Extraversion, arousal theory and performance: A study of individual differences in the eeg. Pers Individ Dif 1993, 14: 347–363.

    Article  Google Scholar 

  26. O’Gorman RL, Kumari V, Williams SC, Zelaya FO, Connor SE, Alsop DC, et al. Personality factors correlate with regional cerebral perfusion. Neuroimage 2006, 31: 489–495.

    Article  PubMed  Google Scholar 

  27. Gale A, Coles M, Blaydon J. Extraversion-introversion and the EEG. Br J Psychol 1969, 60: 209–223.

    Article  CAS  PubMed  Google Scholar 

  28. Schmidtke JI, Heller W. Personality, affect and EEG: predicting patterns of regional brain activity related to extraversion and neuroticism. Pers Individ Dif 2004, 36: 717–732.

    Article  Google Scholar 

  29. Alessandri G, Caprara GV, De Pascalis V. Relations among EEG-alpha asymmetry and positivity personality trait. Brain Cogn 2015, 97: 10–21.

    Article  PubMed  Google Scholar 

  30. Chavanon ML, Wacker J, Stemmler G. Rostral anterior cingulate activity generates posterior versus anterior theta activity linked to agentic extraversion. Cogn Affect Behav Neurosci 2011, 11: 172–185.

    Article  PubMed  Google Scholar 

  31. Ditraglia GM, Polich J. P300 and introverted/extraverted personality types. Psychophysiology 1991, 28: 177–184.

    Article  CAS  PubMed  Google Scholar 

  32. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995, 34: 537–541.

    Article  CAS  PubMed  Google Scholar 

  33. Raichle ME. The brain’s dark energy. Sci Am 2010, 302: 44–49.

    Article  PubMed  Google Scholar 

  34. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003, 100: 253–258.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Lei X, Wang Y, Yuan H, Mantini D. Neuronal oscillations and functional interactions between resting state networks. Hum Brain Mapp 2014, 35: 3517–3528.

    Article  PubMed  Google Scholar 

  36. Gao Q, Xu Q, Duan X, Liao W, Ding J, Zhang Z, et al. Extraversion and neuroticism relate to topological properties of resting-state brain networks. Front Hum Neurosci 2013, 7: 257.

    PubMed Central  PubMed  Google Scholar 

  37. Raichle ME, Mac Leod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001, 98: 676–682.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Deckersbach T, Miller KK, Klibanski A, Fischman A, Dougherty DD, Blais MA, et al. Regional cerebral brain metabolism correlates of neuroticism and extraversion. Depress Anxiety 2006, 23: 133–138.

    Article  CAS  PubMed  Google Scholar 

  39. Johnson DL, Wiebe JS, Gold SM, Andreasen NC, Hichwa RD, Watkins GL, et al. Cerebral blood flow and personality: a positron emission tomography study. Am J Psychiatry 1999, 156: 252–257.

    CAS  PubMed  Google Scholar 

  40. Kim SH, Hwang JH, Park HS, Kim SE. Resting brain metabolic correlates of neuroticism and extraversion in young men. Neuroreport 2008, 19: 883–886.

    Article  CAS  PubMed  Google Scholar 

  41. Volkow ND, Tomasi D, Wang G-J, Fowler JS, Telang F, Goldstein RZ, et al. Positive emotionality is associated with baseline metabolism in orbitofrontal cortex and in regions of the default network. Mol Psychiatry 2011, 16: 818–825.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Kunisato Y, Okamoto Y, Okada G, Aoyama S, Nishiyama Y, Onoda K, et al. Personality traits and the amplitude of spontaneous low-frequency oscillations during resting state. Neurosci Lett 2011, 492: 109–113.

    Article  CAS  PubMed  Google Scholar 

  43. Costa PT, McCrae RR. Neo PI-R professional manual. Odessa, FL: Psychological Assessment Resources 1992.

    Google Scholar 

  44. Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, et al. The oscillating brain: complex and reliable. Neuroimage 2010, 49: 1432–1445.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Wei L, Duan X, Zheng C, Wang S, Gao Q, Zhang Z, et al. Specific frequency bands of amplitude low-frequency oscillation encodes personality. Hum Brain Mapp 2014, 35: 331–339.

    Article  PubMed  Google Scholar 

  46. Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 1994, 2: 56–78.

    Article  Google Scholar 

  47. Sporns O. The human connectome: origins and challenges. Neuroimage 2013.

    Google Scholar 

  48. Bickart KC, Hollenbeck MC, Barrett LF, Dickerson BC. Intrinsic amygdala-cortical functional connectivity predicts social network size in humans. J Neurosci 2012, 32: 14729–14741.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Liu H, Li H, Wang Y, Lei X. Enhanced brain small-worldness after sleep deprivation: a compensatory effect. J Sleep Res 2014, 23: 554–563.

    Article  PubMed  Google Scholar 

  50. Lei X, Wang Y, Yuan H, Chen A. Brain scale-free properties in awake rest and NREM sleep: A simultaneous EEG/fMRI study. Brain Topogr 2015, 28: 292–304.

    Article  PubMed  Google Scholar 

  51. Maxim V, Sendur L, Fadili J, Suckling J, Gould R, Howard R, et al. Fractional Gaussian noise, functional MRI and Alzheimer’s disease. Neuroimage 2005, 25: 141–158.

    Article  PubMed  Google Scholar 

  52. Lai MC, Lombardo MV, Chakrabarti B, Sadek SA, Pasco G, Wheelwright SJ, et al. A shift to randomness of brain oscillations in people with autism. Biol Psychiatry 2010, 68: 1092–1099.

    Article  PubMed  Google Scholar 

  53. Hahn T, Dresler T, Ehlis AC, Pyka M, Dieler AC, Saathoff C, et al. Randomness of resting-state brain oscillations encodes Gray’s personality trait. Neuroimage 2012, 59: 1842–1845.

    Article  PubMed  Google Scholar 

  54. Qian M, Wu G, Zhu R, Zhang S. Development of the Revised Eysenck Personality Questionnaire Short Scale for Chinese (EPQ-RSC)(Article written in chinese). Acta Psychol Sin 2000, 32: 317–323.

    Google Scholar 

  55. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 2001, 14: 140–151.

    Article  CAS  PubMed  Google Scholar 

  56. Zilber N, Ciuciu P, Abry P, van Wassenhove V. Modulation of Scale-Free Properties of Brain Activity in Meg. 2012 9th Ieee International Symposium on Biomedical Imaging (Isbi) 2012: 1531–1534.

    Chapter  Google Scholar 

  57. Xin F, Lei X. Competition between frontoparietal control and default networks supports social working memory and empathy. Social Cogn Affect Neurosci 2015, 10: 1144–1152.

    Article  Google Scholar 

  58. Norman KA, Polyn SM, Detre GJ, Haxby JV. Beyond mindreading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 2006, 10: 424–430.

    Article  PubMed  Google Scholar 

  59. Hassabis D, Spreng RN, Rusu AA, Robbins CA, Mar RA, Schacter DL. Imagine all the people: how the brain creates and uses personality models to predict behavior. Cereb Cortex 2014, 24: 1979–1987.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Lei X, Qiu C, Xu P, Yao D. A parallel framework for simultaneous EEG/fMRI analysis: Methodology and simulation. Neuroimage 2010, 52: 1123–1134.

    Article  PubMed  Google Scholar 

  61. Sheng T, Gheytanchi A, Aziz-Zadeh L. Default network deactivations are correlated with psychopathic personality traits. PLoS One 2010, 5: e12611.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, X., Yang, T. & Wu, T. Functional neuroimaging of extraversion-introversion. Neurosci. Bull. 31, 663–675 (2015). https://doi.org/10.1007/s12264-015-1565-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-015-1565-1

Keywords

Navigation