Skip to main content
Log in

Microtubule dynamics in axon guidance

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Precise modulation of the cytoskeleton is involved in a variety of cellular processes including cell division, migration, polarity, and adhesion. In developing post-mitotic neurons, extracellular guidance cues not only trigger signaling cascades that act at a distance to indirectly regulate microtubule distribution, and assembly and disassembly in the growth cone, but also directly modulate microtubule stability and dynamics through coupling of guidance receptors with microtubules to control growth-cone turning. Microtubule-associated proteins including classical microtubule-associated proteins and microtubule plus-end tracking proteins are required for modulating microtubule dynamics to influence growth-cone steering. Multiple key signaling components, such as calcium, small GTPases, glycogen synthase kinase-3β, and c-Jun N-terminal kinase, link upstream signal cascades to microtubule stability and dynamics in the growth cone to control axon outgrowth and projection. Understanding the functions and regulation of microtubule dynamics in the growth cone provides new insights into the molecular mechanisms of axon guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Guan KL, Rao Y. Signalling mechanisms mediating neuronal responses to guidance cues. Nat Rev Neurosci 2003, 4: 941–956.

    CAS  PubMed  Google Scholar 

  2. Kolodkin AL, Tessier-Lavigne M. Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb Perspect Biol 2011, 3.

  3. Lowery LA, Van Vactor D. The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol 2009, 10: 332–343.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Dent EW, Gupton SL, Gertler FB. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 2011, 3.

  5. Vitriol EA, Zheng JQ. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 2012, 73: 1068–1081.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Stoeckli E, Zou Y. How are neurons wired to form functional and plastic circuits? Meeting on Axon Guidance, Synaptogenesis & Neural Plasticity. EMBO Rep 2009, 10: 326–330.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Suh LH, Oster SF, Soehrman SS, Grenningloh G, Sretavan DW. L1/Laminin modulation of growth cone response to EphB triggers growth pauses and regulates the microtubule destabilizing protein SCG10. J Neurosci 2004, 24: 1976–1986.

    CAS  PubMed  Google Scholar 

  8. Letourneau TMGaPC. Actin dynamics in growth cone motility and navigation. J Neurochem 2013: 14.

    Google Scholar 

  9. Gordon-Weeks PR. Microtubules and growth cone function. J Neurobiol 2004, 58: 70–83.

    CAS  PubMed  Google Scholar 

  10. Conde C, Caceres A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 2009, 10: 319–332.

    CAS  PubMed  Google Scholar 

  11. Tischfield MA, Cederquist GY, Gupta ML, Jr., Engle EC. Phenotypic spectrum of the tubulin-related disorders and functional implications of disease-causing mutations. Curr Opin Genet Dev 2011, 21: 286–294.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Jaglin XH, Poirier K, Saillour Y, Buhler E, Tian G, Bahi-Buisson N, et al. Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat Genet 2009, 41: 746–752.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Poirier K, Saillour Y, Bahi-Buisson N, Jaglin XH, Fallet-Bianco C, Nabbout R, et al. Mutations in the neuronal SS-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum Mol Genet 2010, 19: 4462–4473.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Tischfield MA, Baris HN, Wu C, Rudolph G, Van Maldergem L, He W, et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 2010, 140: 74–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Kumar RA, Pilz DT, Babatz TD, Cushion TD, Harvey K, Topf M, et al. TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Hum Mol Genet 2010, 19: 2817–2827.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Cushion TD, Dobyns WB, Mullins JGL, Stoodley N, Chung S-K, Fry AE, et al. Overlapping cortical malformations and mutations in TUBB2B and TUBA1A. Brain 2013, 136: 536–548.

    PubMed  Google Scholar 

  17. Guerrini R, Mei D, Cordelli DM, Pucatti D, Franzoni E, Parrini E. Symmetric polymicrogyria and pachygyria associated with TUBB2B gene mutations. Eur J Hum Genet 2012, 20: 995–998.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Abdollahi MR, Morrison E, Sirey T, Molnar Z, Hayward BE, Carr IM, et al. Mutation of the variant alpha-tubulin TUBA8 results in polymicrogyria with optic nerve hypoplasia. Am J Hum Genet 2009, 85: 737–744.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Qu C, Dwyer, T, Shao, Q, Yang, T, Huang, H, Liu, G. Direct binding of TUBB3 with DCC couples netrin-1 signaling to intracellular microtubule dynamics in axon outgrowth and guidance. J Cell Sci 2013, 126: 12.

    Google Scholar 

  20. Sohal AP, Montgomery T, Mitra D, Ramesh V. TUBA1A mutation-associated lissencephaly: case report and review of the literature. Pediatr Neurol 2012, 46: 127–131.

    PubMed  Google Scholar 

  21. Fallet-Bianco C, Loeuillet L, Poirier K, Loget P, Chapon F, Pasquier L, et al. Neuropathological phenotype of a distinct form of lissencephaly associated with mutations in TUBA1A. Brain 2008, 131: 2304–2320.

    PubMed  Google Scholar 

  22. Lecourtois M, Poirier K, Friocourt G, Jaglin X, Goldenberg A, Saugier-Veber P, et al. Human lissencephaly with cerebellar hypoplasia due to mutations in TUBA1A: expansion of the foetal neuropathological phenotype. Acta Neuropathol 2010, 119: 779–789.

    CAS  PubMed  Google Scholar 

  23. Okumura A, Hayashi M, Tsurui H, Yamakawa Y, Abe S, Kudo T, et al. Lissencephaly with marked ventricular dilation, agenesis of corpus callosum, and cerebellar hypoplasia caused by TUBA1A mutation. Brain Dev 2013, 35: 274–279.

    PubMed  Google Scholar 

  24. Poirier K, Saillour Y, Fourniol F, Francis F, Souville I, Valence S, et al. Expanding the spectrum of TUBA1A-related cortical dysgenesis to Polymicrogyria. Eur J Hum Genet 2013, 21: 381–385.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Zanni G, Colafati GS, Barresi S, Randisi F, Talamanca LF, Genovese E, et al. Description of a novel TUBA1A mutation in Arg-390 associated with asymmetrical polymicrogyria and mid-hindbrain dysgenesis. Eur J Paediatr Neurol 2013, 17: 361–365.

    PubMed  Google Scholar 

  26. Cushion TD, Dobyns WB, Mullins JG, Stoodley N, Chung SK, Fry AE, et al. Overlapping cortical malformations and mutations in TUBB2B and TUBA1A. Brain 2013, 136: 536–548.

    PubMed  Google Scholar 

  27. Romaniello R, Arrigoni F, Cavallini A, Tenderini E, Baschirotto C, Triulzi F, et al. Brain malformations and mutations in alpha- and beta-tubulin genes: a review of the literature and description of two new cases. Dev Med Child Neurol 2014, 56 (4): 354–360.

    Google Scholar 

  28. Cederquist GY, Luchniak A, Tischfield MA, Peeva M, Song Y, Menezes MP, et al. An inherited TUBB2B mutation alters a kinesin-binding site and causes polymicrogyria, CFEOM and axon dysinnervation. Hum Mol Genet 2012, 21: 5484–5499.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Romaniello R, Tonelli A, Arrigoni F, Baschirotto C, Triulzi F, Bresolin N, et al. A novel mutation in the beta-tubulin gene TUBB2B associated with complex malformation of cortical development and deficits in axonal guidance. Dev Med Child Neurol 2012, 54: 765–769.

    PubMed  Google Scholar 

  30. Buck KB, Zheng JQ. Growth cone turning induced by direct local modification of microtubule dynamics. J Neurosci 2002, 22: 9358–9367.

    CAS  PubMed  Google Scholar 

  31. Dent EW, Barnes AM, Tang F, Kalil K. Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton. J Neurosci 2004, 24: 3002–3012.

    CAS  PubMed  Google Scholar 

  32. Challacombe JF, Snow DM, Letourneau PC. Dynamic microtubule ends are required for growth cone turning to avoid an inhibitory guidance cue. J Neurosci 1997, 17: 3085–3095.

    CAS  PubMed  Google Scholar 

  33. Tanaka E, Kirschner MW. The role of microtubules in growth cone turning at substrate boundaries. J Cell Biol 1995, 128: 127–137.

    CAS  PubMed  Google Scholar 

  34. Sabry JH, O’Connor TP, Evans L, Toroian-Raymond A, Kirschner M, Bentley D. Microtubule behavior during guidance of pioneer neuron growth cones in situ. J Cell Biol 1991, 115: 381–395.

    CAS  PubMed  Google Scholar 

  35. Lee AC, Suter DM. Quantitative analysis of microtubule dynamics during adhesion-mediated growth cone guidance. Dev Neurobiol 2008, 68: 1363–1377.

    PubMed Central  PubMed  Google Scholar 

  36. Lei WL, Xing SG, Deng CY, Ju XC, Jiang XY, Luo ZG. Laminin/beta 1 integrin signal triggers axon formation by promoting microtubule assembly and stabilization. Cell Res 2012, 22: 954–972.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Kalil K, Dent EW. Touch and go: guidance cues signal to the growth cone cytoskeleton. Curr Opin Neurobiol 2005, 15: 521–526.

    CAS  PubMed  Google Scholar 

  38. Sengottuvel V, Leibinger M, Pfreimer M, Andreadaki A, Fischer D. Taxol facilitates axon regeneration in the mature CNS. J Neurosci 2011, 31: 2688–2699.

    CAS  PubMed  Google Scholar 

  39. Purro SA, Ciani L, Hoyos-Flight M, Stamatakou E, Siomou E, Salinas PC. Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli. J Neurosci 2008, 28: 8644–8654.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Augsburger A, Schuchardt A, Hoskins S, Dodd J, Butler S. BMPs as mediators of roof plate repulsion of commissural neurons. Neuron 1999, 24: 127–141.

    CAS  PubMed  Google Scholar 

  41. Butler SJ, Dodd J. A role for BMP heterodimers in roof platemediated repulsion of commissural axons. Neuron 2003, 38: 389–401.

    CAS  PubMed  Google Scholar 

  42. Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 2003, 113: 11–23.

    CAS  PubMed  Google Scholar 

  43. Stein E, Tessier-Lavigne M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 2001, 291: 1928–1938.

    CAS  PubMed  Google Scholar 

  44. Lyuksyutova AI, Lu CC, Milanesio N, King LA, Guo N, Wang Y, et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 2003, 302: 1984–1988.

    CAS  PubMed  Google Scholar 

  45. Keeble TR, Halford MM, Seaman C, Kee N, Macheda M, Anderson RB, et al. The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J Neurosci 2006, 26: 5840–5848.

    CAS  PubMed  Google Scholar 

  46. Ahmed G, Shinmyo Y, Ohta K, Islam SM, Hossain M, Naser IB, et al. Draxin inhibits axonal outgrowth through the netrin receptor DCC. J Neurosci 2011, 31: 14018–14023.

    CAS  PubMed  Google Scholar 

  47. Islam SM, Shinmyo Y, Okafuji T, Su Y, Naser IB, Ahmed G, et al. Draxin, a repulsive guidance protein for spinal cord and forebrain commissures. Science 2009, 323: 388–393.

    CAS  PubMed  Google Scholar 

  48. Stoeckli ET, Landmesser LT. Axonin-1, Nr-CAM, and Ng-CAM play different roles in the in vivo guidance of chick commissural neurons. Neuron 1995, 14: 1165–1179.

    CAS  PubMed  Google Scholar 

  49. Galjart N. Plus-end-tracking proteins and their interactions at microtubule ends. Curr Biol 2010, 20: R528–537.

    CAS  PubMed  Google Scholar 

  50. Tucker RP, Garner CC, Matus A. In situ localization of microtubule-associated protein mRNA in the developing and adult rat brain. Neuron 1989, 2: 1245–1256.

    CAS  PubMed  Google Scholar 

  51. Meixner A, Haverkamp S, Wassle H, Fuhrer S, Thalhammer J, Kropf N, et al. MAP1B is required for axon guidance and Is involved in the development of the central and peripheral nervous system. J Cell Biol 2000, 151: 1169–1178.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Mack TG, Koester MP, Pollerberg GE. The microtubuleassociated protein MAP1B is involved in local stabilization of turning growth cones. Mol Cell Neurosci 2000, 15: 51–65.

    CAS  PubMed  Google Scholar 

  53. Tymanskyj SR, Scales TME, Gordon-Weeks PR. MAP1B enhances microtubule assembly rates and axon extension rates in developing neurons. Mol Cell Neurosci 2012, 49: 110–119.

    CAS  PubMed  Google Scholar 

  54. Vandecandelaere A, Pedrotti B, Utton MA, Calvert RA, Bayley PM. Differences in the regulation of microtubule dynamics by microtubule-associated proteins MAP1B and MAP2. Cell Motil Cytoskeleton 1996, 35: 134–146.

    CAS  PubMed  Google Scholar 

  55. Takemura R, Okabe S, Umeyama T, Kanai Y, Cowan NJ, Hirokawa N. Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau. J Cell Sci 1992, 103( Pt 4): 953–964.

    CAS  PubMed  Google Scholar 

  56. Black MM, Slaughter T, Fischer I. Microtubule-associated protein 1b (MAP1b) is concentrated in the distal region of growing axons. J Neurosci 1994, 14: 857–870.

    CAS  PubMed  Google Scholar 

  57. Gonzalez-Billault C, Avila J, Caceres A. Evidence for the role of MAP1B in axon formation. Mol Biol Cell 2001, 12: 2087–2098.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 1996, 87: 1001–1014.

    CAS  PubMed  Google Scholar 

  59. Braisted JE, Catalano SM, Stimac R, Kennedy TE, Tessier-Lavigne M, Shatz CJ, et al. Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection. J Neurosci 2000, 20: 5792–5801.

    CAS  PubMed  Google Scholar 

  60. Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RG, Small CG, et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 1997, 386: 796–804.

    CAS  PubMed  Google Scholar 

  61. Del Rio JA, Gonzalez-Billault C, Urena JM, Jimenez EM, Barallobre MJ, Pascual M, et al. MAP 1B is required for Netrin 1 signaling in neuronal migration and axonal guidance. Curr Biol 2004, 14: 840–850.

    PubMed  Google Scholar 

  62. Hall AC, Lucas FR, Salinas PC. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 2000, 100: 525–535.

    CAS  PubMed  Google Scholar 

  63. Ciani L, Krylova O, Smalley MJ, Dale TC, Salinas PC. A divergent canonical WNT-signaling pathway regulates microtubule dynamics: dishevelled signals locally to stabilize microtubules. J Cell Biol 2004, 164: 243–253.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Arimura N, Kaibuchi K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 2007, 8: 194–205.

    CAS  PubMed  Google Scholar 

  65. Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T, et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 2002, 4: 583–591.

    CAS  PubMed  Google Scholar 

  66. Brot S, Rogemond V, Perrot V, Chounlamountri N, Auger C, Honnorat J, et al. CRMP5 interacts with tubulin to inhibit neurite outgrowth, thereby modulating the function of CRMP2. J Neurosci 2010, 30: 10639–10654.

    CAS  PubMed  Google Scholar 

  67. Inagaki N, Chihara K, Arimura N, Menager C, Kawano Y, Matsuo N, et al. CRMP-2 induces axons in cultured hippocampal neurons. Nat Neurosci 2001, 4: 781–782.

    CAS  PubMed  Google Scholar 

  68. Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, et al. Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells 2005, 10: 165–179.

    CAS  PubMed  Google Scholar 

  69. Kimura T, Watanabe H, Iwamatsu A, Kaibuchi K. Tubulin and CRMP-2 complex is transported via Kinesin-1. J Neurochem 2005, 93: 1371–1382.

    CAS  PubMed  Google Scholar 

  70. Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 1995, 376: 509–514.

    CAS  PubMed  Google Scholar 

  71. Brugg B, Matus A. PC12 cells express juvenile microtubuleassociated proteins during nerve growth factor-induced neurite outgrowth. J Cell Biol 1988, 107: 643–650.

    CAS  PubMed  Google Scholar 

  72. Schuyler SC, Pellman D. Microtubule “plus-end-tracking proteins”: The end is just the beginning. Cell 2001, 105: 421–424.

    CAS  PubMed  Google Scholar 

  73. Lee H, Engel U, Rusch J, Scherrer S, Sheard K, Van Vactor D. The microtubule plus end tracking protein Orbit/MAST/CLASP acts downstream of the tyrosine kinase Abl in mediating axon guidance. Neuron 2004, 42: 913–926.

    CAS  PubMed  Google Scholar 

  74. Galjart N. CLIPs and CLASPs and cellular dynamics. Nat Rev Mol Cell Biol 2005, 6: 487–498.

    CAS  PubMed  Google Scholar 

  75. Hur E-M, Saijilafu, Lee BD, Kim S-J, Xu W-L, Zhou F-Q. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules. Genes Dev 2011, 25: 1968–1981.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Koester MP, Muller O, Pollerberg GE. Adenomatous polyposis coli is differentially distributed in growth cones and modulates their steering. J Neurosci 2007, 27: 12590–12600.

    CAS  PubMed  Google Scholar 

  77. Shintani T, Ihara M, Tani S, Sakuraba J, Sakuta H, Noda M. APC2 plays an essential role in axonal projections through the regulation of microtubule stability. J Neurosci 2009, 29: 11628–11640.

    CAS  PubMed  Google Scholar 

  78. Rosin-Arbesfeld R, Ihrke G, Bienz M. Actin-dependent membrane association of the APC tumour suppressor in polarized mammalian epithelial cells. EMBO J 2001, 20: 5929–5939.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Su LK, Burrell M, Hill DE, Gyuris J, Brent R, Wiltshire R, et al. APC binds to the novel protein EB1. Cancer Res 1995, 55: 2972–2977.

    CAS  PubMed  Google Scholar 

  80. Morrison EE, Moncur PM, Askham JM. EB1 identifies sites of microtubule polymerisation during neurite development. Brain Res Mol Brain Res 2002, 98: 145–152.

    CAS  PubMed  Google Scholar 

  81. Nakagawa H, Koyama K, Murata Y, Morito M, Akiyama T, Nakamura Y. EB3, a novel member of the EB1 family preferentially expressed in the central nervous system, binds to a CNS-specific APC homologue. Oncogene 2000, 19: 210–216.

    CAS  PubMed  Google Scholar 

  82. Tortosa E, Galjart N, Avila J, Sayas CL. MAP1B regulates microtubule dynamics by sequestering EB1/3 in the cytosol of developing neuronal cells. EMBO J 2013, 32: 1293–1306.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Laht P, Pill K, Haller E, Veske A. Plexin-B3 interacts with EBfamily proteins through a conserved motif. Biochim Biophys Acta 2012, 1820: 888–893.

    CAS  PubMed  Google Scholar 

  84. Sturgill EG, Ohi R. Microtubule-regulating kinesins. Curr Biol 2013, 23: R946–948.

    CAS  PubMed  Google Scholar 

  85. Howard J, Hyman AA. Microtubule polymerases and depolymerases. Curr Opin Cell Biol 2007, 19: 31–35.

    CAS  PubMed  Google Scholar 

  86. Maor-Nof M, Homma N, Raanan C, Nof A, Hirokawa N, Yaron A. Axonal pruning is actively regulated by the microtubuledestabilizing protein kinesin superfamily protein 2A. Cell Rep 2013, 3: 971–977.

    CAS  PubMed  Google Scholar 

  87. Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 2010, 68: 610–638.

    CAS  PubMed  Google Scholar 

  88. van der Vaart B, van Riel WE, Doodhi H, Kevenaar JT, Katrukha EA, Gumy L, et al. CFEOM1-associated kinesin KIF21A is a cortical microtubule growth inhibitor. Dev Cell 2013, 27: 145–160.

    PubMed  Google Scholar 

  89. Yamada K, Andrews C, Chan WM, McKeown CA, Magli A, de Berardinis T, et al. Heterozygous mutations of the kinesin KIF 21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1). Nat Genet 2003, 35: 318–321.

    CAS  PubMed  Google Scholar 

  90. Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD. NGFinduced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron 2004, 42: 897–912.

    CAS  PubMed  Google Scholar 

  91. Hida T, Yamashita N, Usui H, Nakamura F, Sasaki Y, Kikuchi A, et al. GSK3beta/axin-1/beta-catenin complex is involved in semaphorin3A signaling. J Neurosci 2012, 32: 11905–11918.

    CAS  PubMed  Google Scholar 

  92. Byun J, Kim BT, Kim YT, Jiao Z, Hur EM, Zhou FQ. Slit2 inactivates GSK3beta to signal neurite outgrowth inhibition. PLoS One 2012, 7: e51895.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Hur EM, Zhou FQ. GSK3 signalling in neural development. Nat Rev Neurosci 2010, 11: 539–551.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Zhou FQ, Snider WD. Cell biology. GSK-3beta and microtubule assembly in axons. Science 2005, 308: 211–214.

    CAS  PubMed  Google Scholar 

  95. Goold RG, Owen R, Gordon-Weeks PR. Glycogen synthase kinase 3beta phosphorylation of microtubule-associated protein 1B regulates the stability of microtubules in growth cones. J Cell Sci 1999, 112( Pt 19): 3373–3384.

    CAS  PubMed  Google Scholar 

  96. Lucas FR, Goold RG, Gordon-Weeks PR, Salinas PC. Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J Cell Sci 1998, 111( Pt 10): 1351–1361.

    CAS  PubMed  Google Scholar 

  97. Salinas PC. Modulation of the microtubule cytoskeleton: a role for a divergent canonical Wnt pathway. Trends Cell Biol 2007, 17: 333–342.

    CAS  PubMed  Google Scholar 

  98. Zumbrunn J, Kinoshita K, Hyman AA, Nathke IS. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr Biol 2001, 11: 44–49.

    CAS  PubMed  Google Scholar 

  99. Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T, et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 2002, 4: 583–591.

    CAS  PubMed  Google Scholar 

  100. Kim WY, Zhou FQ, Zhou J, Yokota Y, Wang YM, Yoshimura T, et al. Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth. Neuron 2006, 52: 981–996.

    CAS  PubMed  Google Scholar 

  101. Chang L, Jones Y, Ellisman MH, Goldstein LSB, Karin M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev Cell 2003, 4: 521–533.

    CAS  PubMed  Google Scholar 

  102. Qu C, Li W, Shao Q, Dwyer T, Huang H, Yang T, et al. c-Jun N-terminal Kinase 1 (JNK1) Is Required for Coordination of Netrin Signaling in Axon Guidance. J Biol Chem 2013, 288: 1883–1895.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Pilz DT, Matsumoto N, Minnerath S, Mills P, Gleeson JG, Allen KM, et al. LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 1998, 7: 2029–2037.

    CAS  PubMed  Google Scholar 

  104. Deuel TA, Liu JS, Corbo JC, Yoo SY, Rorke-Adams LB, Walsh CA. Genetic interactions between doublecortin and doublecortin-like kinase in neuronal migration and axon outgrowth. Neuron 2006, 49: 41–53.

    CAS  PubMed  Google Scholar 

  105. Tint I, Jean D, Baas PW, Black MM. Doublecortin associates with microtubules preferentially in regions of the axon displaying actin-rich protrusive structures. J Neurosci 2009, 29: 10995–11010.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Bechstedt S, Brouhard GJ. Doublecortin recognizes the 13-protofilament microtubule cooperatively and tracks microtubule ends. Dev Cell 2012, 23: 181–192.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Morii H, Shiraishi-Yamaguchi Y, Mori N. SCG10, a microtubule destabilizing factor, stimulates the neurite outgrowth by modulating microtubule dynamics in rat hippocampal primary cultured neurons. J Neurobiol 2006, 66: 1101–1114.

    CAS  PubMed  Google Scholar 

  108. Tararuk T, Ostman N, Li W, Bjorkblom B, Padzik A, Zdrojewska J, et al. JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J Cell Biol 2006, 173: 265–277.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Stein R, Mori N, Matthews K, Lo LC, Anderson DJ. The NGFinducible SCG10 mRNA encodes a novel membrane-bound protein present in growth cones and abundant in developing neurons. Neuron 1988, 1: 463–476.

    CAS  PubMed  Google Scholar 

  110. Antonsson B, Kassel DB, Di Paolo G, Lutjens R, Riederer BM, Grenningloh G. Identification of in vitro phosphorylation sites in the growth cone protein SCG10. Effect Of phosphorylation site mutants on microtubule-destabilizing activity. J Biol Chem 1998, 273: 8439–8446.

    CAS  PubMed  Google Scholar 

  111. Riederer BM, Pellier V, Antonsson B, Di Paolo G, Stimpson SA, Lutjens R, et al. Regulation of microtubule dynamics by the neuronal growth-associated protein SCG10. Proc Natl Acad Sci U S A 1997, 94: 741–745.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Kempf M, Clement A, Faissner A, Lee G, Brandt R. Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 1996, 16: 5583–5592.

    CAS  PubMed  Google Scholar 

  113. Caceres A, Kosik KS. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 1990, 343: 461–463.

    CAS  PubMed  Google Scholar 

  114. Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 2001, 114: 1179–1187.

    CAS  PubMed  Google Scholar 

  115. Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 1994, 369: 488–491.

    CAS  PubMed  Google Scholar 

  116. Ke YD, Suchowerska AK, van der Hoven J, De Silva DM, Wu CW, van Eersel J, et al. Lessons from tau-deficient mice. Int J Alzheimers Dis 2012, 2012: 873270.

    PubMed Central  PubMed  Google Scholar 

  117. Takei Y, Teng J, Harada A, Hirokawa N. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J Cell Biol 2000, 150: 989–1000.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Al-Bassam J, Ozer RS, Safer D, Halpain S, Milligan RA. MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. J Cell Biol 2002, 157: 1187–1196.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Morris M, Maeda S, Vossel K, Mucke L. The many faces of tau. Neuron 2011, 70: 410–426.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Li L, Fothergill T, Hutchins BI, Dent EW, Kalil K. Wnt5a evokes cortical axon outgrowth and repulsive guidance by tau mediated reorganization of dynamic microtubules. Dev Neurobiol 2013.

    Google Scholar 

  121. Wen Z, Guirland C, Ming GL, Zheng JQ. A CaMKII/calcineurin switch controls the direction of Ca(2+)-dependent growth cone guidance. Neuron 2004, 43: 835–846.

    CAS  PubMed  Google Scholar 

  122. Wang GX, Poo MM. Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 2005, 434: 898–904.

    CAS  PubMed  Google Scholar 

  123. Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 2005, 434: 894–898.

    CAS  PubMed  Google Scholar 

  124. Henley J, Poo MM. Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol 2004, 14: 320–330.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Gomez TM, Zheng JQ. The molecular basis for calciumdependent axon pathfinding. Nat Rev Neurosci 2006, 7: 115–125.

    CAS  PubMed  Google Scholar 

  126. Carrillo RA, Olsen DP, Yoon KS, Keshishian H. Presynaptic activity and CaMKII modulate retrograde semaphorin signaling and synaptic refinement. Neuron 2010, 68: 32–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Li L, Hutchins BI, Kalil K. Wnt5a induces simultaneous cortical axon outgrowth and repulsive axon guidance through distinct signaling mechanisms. J Neurosci 2009, 29: 5873–5883.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Goto S, Yamamoto H, Fukunaga K, Iwasa T, Matsukado Y, Miyamoto E. Dephosphorylation of microtubule-associated protein 2, tau factor, and tubulin by calcineurin. J Neurochem 1985, 45: 276–283.

    CAS  PubMed  Google Scholar 

  129. Mandelkow E, Mandelkow EM. Microtubules and microtubuleassociated proteins. Curr Opin Cell Biol 1995, 7: 72–81.

    CAS  PubMed  Google Scholar 

  130. Yamamoto H, Fukunaga K, Goto S, Tanaka E, Miyamoto E. Ca2+, calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, tau factor, and tubulin, and comparison with the cyclic AMP-dependent phosphorylation. J Neurochem 1985, 44: 759–768.

    CAS  PubMed  Google Scholar 

  131. Hall A, Lalli G. Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2010, 2: a001818.

    PubMed Central  PubMed  Google Scholar 

  132. Gomez TM, Letourneau PC. Actin dynamics in growth cone motility and navigation. J Neurochem 2014, 129 (2): 221–234.

    Google Scholar 

  133. Lowery LA, Van Vactor D. The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol 2009, 10: 332–343.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Quinn CC, Wadsworth WG. Axon guidance: asymmetric signaling orients polarized outgrowth. Trends Cell Biol 2008, 18: 597–603.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Namekata K, Watanabe H, Guo X, Kittaka D, Kawamura K, Kimura A, et al. Dock3 regulates BDNF-TrkB signaling for neurite outgrowth by forming a ternary complex with Elmo and RhoG. Genes Cells 2012, 17: 688–697.

    CAS  PubMed  Google Scholar 

  136. Kirschner M, Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell 1986, 45: 329–342.

    CAS  PubMed  Google Scholar 

  137. Gundersen GG. Evolutionary conservation of microtubulecapture mechanisms. Nat Rev Mol Cell Biol 2002, 3: 296–304.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofa Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Dwyer, T. Microtubule dynamics in axon guidance. Neurosci. Bull. 30, 569–583 (2014). https://doi.org/10.1007/s12264-014-1444-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1444-6

Keywords

Navigation