Original Paper
Maternal heat stress regulates the early fat deposition partly through modification of m6A RNA methylation in neonatal piglets

https://doi.org/10.1007/s12192-019-01002-1Get rights and content
Under a Creative Commons license
open access

Abstract

It is known that heat stress induces various physiological challenges in livestock production including changes in lipid metabolism. However, the molecular mechanism of how heat stress regulates lipid metabolism at the mRNA level is still largely unknown. N6-methyl-adenosine (m6A) is the most common and abundant modification on RNA molecules present in eukaryotes, which affects almost all aspects of RNA metabolism and thus gives us the hint that it may participate in changes of gene expression of lipid metabolism during heat stress. Therefore, the purpose of the present study was to investigate the effect of heat stress on fat metabolism in 21-day Large White × Landrace piglets from sows challenged by heat stress from day 85 of gestation until day 21 of lactation. We measured the expression of heat shock proteins (HSPs), genes associated with lipid metabolism, m6A-related enzymes, and m6A levels in abdominal fat and liver of offspring piglets. Our results showed that high ambient temperature significantly increased the expression of HSP70 (P < 0.01) in both liver and abdominal fat and upregulated HSP27 in the liver (P < 0.05). Additionally, genes involved in fat metabolism such as ACACA, FASN, DGAT1, PPAR-γ, SREBP-1c, and FABP4 were upregulated in abdominal fat in the experimental group challenged by high ambient temperature. In the liver, heat stress increased the mRNA expression of DGAT1, SREBP-1c, and CD36 and decreased ATGL and CPT1A expression (P < 0.05). The m6A level was higher in the heat stress group compared with the control group in the liver and abdominal fat of offspring piglets (P < 0.01). Notably, heat stress also increased gene expression of METTL14, WTAP, FTO, and YTHDF2 (P < 0.05) in both abdominal fat and liver. The protein abundances of METTL3, METTL14, and FTO were upregulated after heat stress in abdominal fat (P < 0.05) but not in the liver. Although there was no difference in the protein abundance of YTHDF2 in abdominal fat, its level was increased in the liver (P < 0.05). In conclusion, our findings showed that heat stress increased expression of genes involved in lipogenesis, which provided scientific evidence to the observation of increased fatness in pigs under heat stress. We also demonstrated a possible mechanism that m6A RNA modification may be associated with these changes in lipid metabolism upon heat stress.

Keywords

Heat stress
Fat deposition
Sows
m6A RNA methylation

Cited by (0)