Skip to main content
Log in

The Drosophila melanogaster circadian pacemaker circuit

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

As an experimental model system, the fruit fly Drosophila melanogaster has been seminal in shaping our understanding of the circadian clockwork. The wealth of genetic tools at our disposal over the past four decades has enabled discovery of the genetic and molecular bases of circadian rhythmicity. More recently, detailed investigation leading to the anatomical, neuro-chemical and electrophysiological characterization of the various neuronal subgroups that comprise the circadian machinery has revealed pathways through which these neurons come together to act as a neuronal circuit. Thus the D. melanogaster circadian pacemaker circuit presents a relatively simple and attractive model for the study of neuronal circuits and their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Berni J., Beckwith E. J., Fernández M. P. and Ceriani M. F. 2008 The axon-guidance roundabout gene alters the pace of the Drosophila circadian clock. Eur. J. Neurosci. 27, 396–407.

    Article  PubMed  Google Scholar 

  • Block G. D. 1981 In vivo recording of the ocular circadian rhythm in Aplysia. Brain. Res. 222, 138–143.

    Article  CAS  Google Scholar 

  • Block G. D. and McMahon D. G. 1983 Localized illumination of the Aplysia and Bulla eye reveals new relationships between retinal layers. Brain Res. 265, 134–137.

    Article  PubMed  CAS  Google Scholar 

  • Busza A., Murad A. and Emery P. 2007 Interactions between circadian neurons control temperature synchronization of Drosophila behaviour. J. Neurosci. 27, 10722–10733.

    Article  PubMed  CAS  Google Scholar 

  • Cao G. and Nitabach M. N. 2008 Circadian control of membrane excitability in Drosophila melanogaster lateral ventral clock neurons. J. Neurosci. 28, 6493–6501.

    Article  PubMed  CAS  Google Scholar 

  • Fernández M. P., Chu J., Villella A., Atkinson N., Kay S. A. and Ceriani M. F. 2007 Impaired clock output by altered connectivity in the circadian network. Proc. Natl. Acad. Sci. USA 104, 5650–5655.

    Article  PubMed  CAS  Google Scholar 

  • Fernández M. P., Berni J. and Ceriani M. F. 2008 Circadian remodelling of neuronal circuits involved in rhythmic behavior. PLoS Biol. 6, e69.

    Article  PubMed  CAS  Google Scholar 

  • Giebultowicz J. M. 2001 Peripheral clocks and their role in circadian timing: insights from insects. Philos. Trans. R. Soc. Lond. Ser. B 356, 1791–1799.

    Article  CAS  Google Scholar 

  • Grima B., Chelot E., Xia R. and Rouyer F. 2004 Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431, 869–873.

    Article  PubMed  CAS  Google Scholar 

  • Hamasaka Y. and Nassel D. R. 2006 Mapping of serotonin, dopamine, and histamine in relation to different clock neurons in the brain of Drosophila. J. Comp. Neurol. 10, 314–330.

    Article  CAS  Google Scholar 

  • Hamasaka Y., Wegener C. and Nassel D. R. 2005 GABA modulates Drosophila circadian clock neurons via GABA-B receptors and decreases in calcium. J. Neurobiol. 65, 225–240.

    Article  PubMed  CAS  Google Scholar 

  • Hamasaka Y., Rieger D., Parmentier M. L., Grau Y., Helfrich-Forster C. and Nassel D. R. 2007 Glutamate and its metabotropic receptor in Drosophila clock neuron circuits. J. Comp. Neurol. 505, 32–45.

    Article  PubMed  CAS  Google Scholar 

  • Hardin P. E. 2005 The circadian timekeeping system of Drosophila. Curr. Biol. 15, R714–R722.

    Article  PubMed  CAS  Google Scholar 

  • Helfrich-Förster C. 1995 The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92, 612–616.

    Article  PubMed  Google Scholar 

  • Helfrich-Förster C. 1997 Development of pigment-dispersing hormone-immunoreactive neurons in the nervous system of Drosophila melanogaster. J. Comp. Neurol. 380, 335–354.

    Article  PubMed  Google Scholar 

  • Helfrich-Förster C. 1998 Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: a brain-behavioral study of disconnected mutants. J. Comp. Physiol. A 182, 435–453.

    Article  PubMed  Google Scholar 

  • Helfrich-Förster C. 2003 The neuroarchitecture of the circadian clock in the brain of Drosophila melanogaster. Microsc. Res. Tech. 62, 94–102.

    Article  PubMed  Google Scholar 

  • Helfrich-Förster C. 2005 Organization of endogenous clocks in insects. Biochem. Soc. Trans. 33, 957–961.

    Article  PubMed  Google Scholar 

  • Helfrich-Förster C. and Homberg U. 1993 Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhythmicity. J. Comp. Neurol. 337, 177–190.

    Article  PubMed  Google Scholar 

  • Helfrich-Förster C., Stengl M. and Homberg U. 1998 Organization of the circadian system in insects. Chronobiol. Intl. 15, 567–594.

    Article  Google Scholar 

  • Helfrich-Förster C., Tauber M., Park J. H., Muhlig-Versen M., Schneuwly S. and Hofbauer A. 2000 Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J. Neurosci. 20, 3339–3353.

    PubMed  Google Scholar 

  • Helfrich-Förster C., Shafer O. T., Wulbeck C., Grieshaber E., Rieger D. and Taghert P. 2007 Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J. Comp. Neurol. 500, 47–70.

    Article  PubMed  CAS  Google Scholar 

  • Hodge J. J. and Stanewsky R. 2008 Function of the Shaw potassium channel within the Drosophila circadian clock. PLoS ONE 3, e2274.

    Article  PubMed  CAS  Google Scholar 

  • Holmes T. C., Sheeba V., Mizrak D., Rubovszky B. and Dahdal D. 2007 Circuit breaking and behavioral analysis by molecular genetic manipulation of neural activity in Drosophila. In Invertebrate neurobiology (ed. G. North and R. Greenspan), pp. 19–52. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Homberg U., Reischig T. and Stengl M. 2003 Neural organization of the circadian system of the cockroach Leucophaea maderae. Chronobiol. Intl. 20, 577–591.

    Article  CAS  Google Scholar 

  • Howlader G. and Sharma V. K. 2006 Circadian regulation of egg-laying behavior in fruit flies Drosophila melanogaster. J. Insect Physiol. 52, 779–785.

    Article  PubMed  CAS  Google Scholar 

  • Hyun S., Lee Y., Hong S. T., Bang S., Paik D., Kang J. et al. 2005 Drosophila GPCR Han is a receptor for the circadian clock neuropeptide PDF. Neuron 48, 267–278.

    Article  PubMed  CAS  Google Scholar 

  • Inouye S. T. and Kawamura H. 1979 Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. USA 76, 5962–5966.

    Article  PubMed  CAS  Google Scholar 

  • Kalamatianos T., Kallo I., Piggins H. D. and Coen C. W. 2004 Expression of VIP and/or PACAP receptor mRNA in peptide synthesizing cells within the suprachiasmatic nucleus of the rat and in its efferent target sites. J. Comp. Neurol. 475, 19–35.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko M. and Hall J. C. 2000 Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J. Comp. Neurol. 422, 66–94.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko M., Helfrich-Forster C. and Hall J. C. 1997 Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J. Neurosci. 17, 6745–6760.

    PubMed  CAS  Google Scholar 

  • Kaneko M., Park J. H., Cheng Y., Hardin P. E. and Hall J. C. 2000 Disruption of synaptic transmission or clock-gene-product oscillations in circadian pacemaker cells of Drosophila cause abnormal behavioral rhythms. J. Neurobiol. 43, 207–233.

    Article  PubMed  CAS  Google Scholar 

  • Klarsfeld A., Malpel S., Michard-Vanhee C., Picot M., Chelot E. and Rouyer F. 2004 Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila. J. Neurosci. 24, 1468–1477.

    Article  PubMed  CAS  Google Scholar 

  • Lear B. C., Merrill C. E., Lin J. M., Schroeder A., Zhang L. and Allada R. 2005a A G protein-coupled receptor, groom-of-PDF, is required for PDF neuron action in circadian behavior. Neuron 48, 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Lear B. C., Lin J. M., Keath J. R., McGill J. J., Raman I. M. and Allada R. 2005b The ion channel narrow abdomen is critical for neural output of the Drosophila circadian pacemaker. Neuron 48, 965–976.

    Article  PubMed  CAS  Google Scholar 

  • Lee G., Bahn J. H. and Park J. H. 2006 Sex- and clock-controlled expression of the neuropeptide F gene in Drosophila. Proc. Natl. Acad. Sci. USA 103, 12580–12585.

    Article  PubMed  CAS  Google Scholar 

  • Lin Y., Stormo G. D. and Taghert P. H. 2004 The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J. Neurosci. 24, 7951–7957.

    Article  PubMed  CAS  Google Scholar 

  • Mertens I., Vandingenen A., Johnson E. C., Shafer O. T., Li W., Trigg J. S. et al. 2005 PDF receptor signalling in Drosophila contributes to both circadian and geotactic behaviours. Neuron 48, 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Miyasako Y., Umezaki Y. and Tomioka K. 2007 Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of Drosophila circadian locomotor rhythms. J. Biol. Rhythms 22, 115–126.

    Article  PubMed  Google Scholar 

  • Murad A., Emery-Le M. and Emery P. 2007 A subset of dorsal neurons modulates circadian behavior and light responses in Drosophila. Neuron 53, 689–701.

    Article  PubMed  CAS  Google Scholar 

  • Myers E. M., Yu J. and Sehgal A. 2003 Circadian control of eclosion: interaction between a central and peripheral clock in Drosophila melanogaster. Curr. Biol. 13, 526–533.

    Article  PubMed  CAS  Google Scholar 

  • Nitabach M. N., Blau J. and Holmes T. C. 2002 Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109, 485–495.

    Article  PubMed  CAS  Google Scholar 

  • Nitabach M. N., Sheeba V., Vera D. A., Blau J. and Holmes T. C. 2005 Membrane electrical excitability is necessary for the free-running larval Drosophila circadian clock. J. Neurobiol. 62, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Nitabach M. N., Wu Y., Sheeba V., Lemon W. C., Strumbos J., Zelensky P. K. et al. 2006 Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods. J. Neurosci. 26, 479–489.

    Article  PubMed  CAS  Google Scholar 

  • Park D. and Griffith L. C. 2006 Electrophysiological and anatomical characterization of PDF-positive clock neurons in the intact adult Drosophila brain. J. Neurophysiol. 95, 3955–3960.

    Article  PubMed  Google Scholar 

  • Park J. H., Helfrich-Förster C., Lee G., Liu L., Rosbash M. and Hall J. C. 2000 Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl. Acad. Sci. USA 97, 3608–3613.

    Article  PubMed  CAS  Google Scholar 

  • Peng Y., Stoleru D., Levine J. D., Hall J. C. and Rosbash M. 2003 Drosophila free-running rhythms require intercellular communication. PLoS Biol. 1, e13.

    Article  PubMed  Google Scholar 

  • Plautz J. D., Kaneko M., Hall J. C. and Kay S. A. 1997 Independent photoreceptive circadian clocks throughout Drosophila. Science 278, 1632–1635.

    Article  PubMed  CAS  Google Scholar 

  • Rao K. R., Riehm J. P., Zahnow C. A., Kleinholz L. H., Tarr G. E., Johnson L. et al. 1985 Characterization of a pigment-dispersing hormone in eyestalks of the fiddler crab Uca pugilator. Proc. Natl. Acad. Sci. USA 82, 5319–5322.

    Article  PubMed  CAS  Google Scholar 

  • Renn S. C., Park J. H., Rosbash M., Hall J. C. and Taghert P.H. 1999 A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99, 791–802.

    Article  PubMed  CAS  Google Scholar 

  • Rosato E. and Kyriacou C. P. 2006 Analysis of locomotor activity rhythms in Drosophila. Nat. Protoc. 1, 559–568.

    Article  PubMed  Google Scholar 

  • Sakai T. and Ishida N. 2001 Time, love and species. Neuro. Endocrinol. Lett. 22, 222–228.

    PubMed  CAS  Google Scholar 

  • Schneider N. L. and Stengl M. 2006 Gap junctions between accessory medulla neurons appear to synchronize circadian clock cells of the cockroach Leucophaea maderae. J. Neurophysiol. 95, 1996–2002.

    Article  PubMed  Google Scholar 

  • Shafer O. T., Helfrich-Förster C., Renn S. C. and Taghert P. H. 2006 Re-evaluation of Drosophila melanogaster’s neuronal circadian pacemakers reveals new neuronal classes. J. Comp. Neurol. 498, 180–193.

    Article  PubMed  Google Scholar 

  • Shafer O. T., Kim D. J., Dunbar-Yaffe R., Nikolaev V. O., Lohse M. J. and Taghert P. H. 2008 Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron 58, 223–237.

    Article  PubMed  CAS  Google Scholar 

  • Sheeba V., Kaneko M., Sharma V. K. and Holmes T. C. 2008a The Drosophila circadian pacemaker circuit: Pas de Deux or Tarantella? Crit. Rev. Biochem. Mol. Biol. 43, 37–61.

    Article  PubMed  Google Scholar 

  • Sheeba V., Gu H., Sharma V. K., O’Dowd D. K. and Holmes T. C. 2008b Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. J. Neurophysiol. 99, 976–988.

    Article  PubMed  Google Scholar 

  • Sheeba V., Sharma V. K., Gu H., Chou Y. T., O’Dowd D. K. and Holmes T. C. 2008c Pigment dispersing factor-dependent and -independent circadian locomotor behavioral rhythms. J. Neurosci. 28, 217–227.

    Article  PubMed  CAS  Google Scholar 

  • Sheeba V., Fogle K.J., Kaneko M., Rashid S., Chou Y. T., Sharma V. K. and Holmes T. C. 2008d Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr. Biol. 18, 1537–1545.

    Article  PubMed  CAS  Google Scholar 

  • Shiga S. 2003 Anatomy and functions of brain neurosecretory cells in Diptera. Microsc. Res. Tech. 62, 114–131.

    Article  Google Scholar 

  • Stoleru D., Peng Y., Agosto J. and Rosbash M. 2004 Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431, 862–868.

    Article  PubMed  CAS  Google Scholar 

  • Suh J. and Jackson F. R. 2007 Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55, 435–447.

    Article  PubMed  CAS  Google Scholar 

  • Tomioka K., Miyasako Y. and Umezaki Y. 2008 PDF as a coupling mediator between the light-entrainable and temperatureentrainable clocks in Drosophila melanogaster. Acta. Biol. Hung. 59, suppl. 149–155.

    Article  PubMed  Google Scholar 

  • Wu Y., Cao G., Pavlicek B., Luo X. and Nitabach M. N. 2008a Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin. PLoS Biol. 6, e273.

    Article  PubMed  CAS  Google Scholar 

  • Wu Y., Cao G. and Nitabach M. N. 2008b Electrical silencing of PDF neurons advances the phase of non-PDF clock neurons in Drosophila. J. Biol. Rhythms 23, 117–128.

    Article  PubMed  Google Scholar 

  • Wulbeck C., Grieshaber E. and Helfrich-Forster C. 2008 Pigment-dispersing factor (PDF) has different effects on Drosophila’s circadian clocks in the accessory medulla and in the dorsal brain. J. Biol. Rhythms 23, 409–424.

    Article  PubMed  Google Scholar 

  • Zheng X. and Sehgal A. 2008 Probing the relative importance of molecular oscillations in the circadian clock. Genetics 178, 1147–1155.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasu Sheeba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheeba, V. The Drosophila melanogaster circadian pacemaker circuit. J Genet 87, 485–493 (2008). https://doi.org/10.1007/s12041-008-0071-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-008-0071-x

Keywords

Navigation