Skip to main content

Advertisement

Log in

Cerebrospinal Fluid Ceruloplasmin, Haptoglobin, and Vascular Endothelial Growth Factor Are Associated with Neurocognitive Impairment in Adults with HIV Infection

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dysregulated iron transport and a compromised blood–brain barrier are implicated in HIV-associated neurocognitive disorders (HAND). We quantified the levels of proteins involved in iron transport and/or angiogenesis—ceruloplasmin, haptoglobin, and vascular endothelial growth factor (VEGF)—as well as biomarkers of neuroinflammation, in cerebrospinal fluid (CSF) from 405 individuals with HIV infection and comprehensive neuropsychiatric assessments. Associations with HAND [defined by a Global Deficit Score (GDS) ≥ 0.5, GDS as a continuous measure (cGDS), or by Frascati criteria] were evaluated for the highest versus lowest tertile of each biomarker, adjusting for potential confounders. Higher CSF VEGF was associated with GDS-defined impairment [odds ratio (OR) 2.17, p = 0.006] and cGDS in unadjusted analyses and remained associated with GDS impairment after adjustment (p = 0.018). GDS impairment was also associated with higher CSF ceruloplasmin (p = 0.047) and with higher ceruloplasmin and haptoglobin in persons with minimal comorbidities (ORs 2.37 and 2.13, respectively; both p = 0.043). In persons with minimal comorbidities, higher ceruloplasmin and haptoglobin were associated with HAND by Frascati criteria (both p < 0.05), and higher ceruloplasmin predicted worse impairment (higher cGDS values, p < 0.01). In the subgroup with undetectable viral load and minimal comorbidity, CSF ceruloplasmin and haptoglobin were strongly associated with GDS impairment (ORs 5.57 and 2.96, respectively; both p < 0.01) and HAND (both p < 0.01). Concurrently measured CSF IL-6 and TNF-α were only weakly correlated to these three biomarkers. Higher CSF ceruloplasmin, haptoglobin, and VEGF are associated with a significantly greater likelihood of HAND, suggesting that interventions aimed at disordered iron transport and angiogenesis may be beneficial in this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

HAND:

HIV-associated neurocognitive disorder

NC:

Neurocognitive

ART:

Combination antiretroviral therapy

CSF:

Cerebrospinal fluid

VEGF:

Vascular endothelial growth factor

TNF-α:

Tumor necrosis factor-alpha

IL-6:

Interleukin 6

CXCL-10:

C-X-C chemokine motif ligand 10

cGDS/GDS:

(continuous) Global Deficit Score

BBB:

Blood–brain barrier

CHARTER:

CNS HIV antiretroviral therapy effects research (study)

HCV:

Hepatitis C virus

PC:

Principal components

OR:

Odds ratio

IQR:

Interquartile range

T (1–3):

Tertile (1–3)

WRAT:

Wide-range achievement test

References

  1. Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A et al (2016) HIV-associated neurocognitive disorder—pathogenesis and prospects for treatment. Nat Rev Neurol 12:309

    Article  Google Scholar 

  2. Fields JA, Dumaop W, Crews L, Adame A, Spencer B, Metcalf J, He J, Rockenstein E et al (2015) Mechanisms of HIV-1 tat neurotoxicity via CDK5 translocation and hyper-activation: role in HIV-associated neurocognitive disorders. Curr HIV Res 13:43–54

    Article  CAS  Google Scholar 

  3. Grant I, Franklin DR Jr, Deutsch R, Woods SP, Vaida F, Ellis RJ, Letendre SL, Marcotte TD et al (2014) Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology 82:2055–2062

    Article  CAS  Google Scholar 

  4. Avci G, Sheppard DP, Tierney SM, Kordovski VM, Sullivan KL, Woods SP (2017) A systematic review of prospective memory in HIV disease: from the laboratory to daily life. Clin Neuropsychol:1–33

  5. Group MEW (2013) Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the mind exchange program. Clin Infect Dis 56:1004–1017

    Article  Google Scholar 

  6. Patton SM, Wang Q, Hulgan T, Connor JR, Jia P, Zhao Z, Letendre SL, Ellis RJ et al (2017) Cerebrospinal fluid (CSF) biomarkers of iron status are associated with CSF viral load, antiretroviral therapy, and demographic factors in HIV-infected adults. Fluids and barriers of the CNS 14:11

    Article  Google Scholar 

  7. Rozzi SJ, Avdoshina V, Fields JA, Trejo M, Ton HT, Ahern GP, Mocchetti I (2017) Human immunodeficiency virus promotes mitochondrial toxicity. Neurotox Res 32:723–733

    Article  CAS  Google Scholar 

  8. Cherayil BJ (2010) Iron and immunity: immunological consequences of iron deficiency and overload. Arch Immunol Ther Exp 58:407–415

    Article  CAS  Google Scholar 

  9. Saghiri MA, Asatourian A, Orangi J, Sorenson CM, Sheibani N (2015) Functional role of inorganic trace elements in angiogenesis—part I: N, Fe, Se, P, Au, and Ca. Crit Rev Oncol Hematol 96:129–142

    Article  Google Scholar 

  10. Bhatia NS, Chow FC (2016) Neurologic complications in treated HIV-1 infection. Curr Neurol Neurosci Rep 16:62

    Article  Google Scholar 

  11. Eden A, Marcotte TD, Heaton RK, Nilsson S, Zetterberg H, Fuchs D, Franklin D, Price RW et al (2016) Increased intrathecal immune activation in virally suppressed HIV-1 infected patients with neurocognitive impairment. PLoS One 11:e0157160

    Article  Google Scholar 

  12. Janelidze S, Hertze J, Nagga K, Nilsson K, Nilsson C, Swedish Bio FSG, Wennstrom M, van Westen D et al (2017) Increased blood–brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol Aging 51:104–112

    Article  CAS  Google Scholar 

  13. Nightingale S, Winston A, Letendre S, Michael BD, McArthur JC, Khoo S, Solomon T (2014) Controversies in HIV-associated neurocognitive disorders. Lancet Neurol 13:1139–1151

    Article  CAS  Google Scholar 

  14. Burkhart A, Skjorringe T, Johnsen KB, Siupka P, Thomsen LB, Nielsen MS, Thomsen LL, Moos T (2015) Expression of iron-related proteins at the neurovascular unit supports reduction and reoxidation of iron for transport through the blood–brain barrier. Mol Neurobiol

  15. McCarthy RC, Kosman DJ (2014) Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells. PLoS One 9:e89003

    Article  Google Scholar 

  16. Mehta SR, Perez-Santiago J, Hulgan T, Day TR, Barnholtz-Sloan J, Gittleman H, Letendre S, Ellis R et al (2017) Cerebrospinal fluid cell-free mitochondrial DNA is associated with HIV replication, iron transport, and mild HIV-associated neurocognitive impairment. J Neuroinflammation 14:72

    Article  Google Scholar 

  17. Buechler C, Eisinger K, Krautbauer S (2013) Diagnostic and prognostic potential of the macrophage specific receptor CD163 in inflammatory diseases. Inflamm Allergy Drug Targets 12:391–402

    Article  CAS  Google Scholar 

  18. Thomsen JH, Etzerodt A, Svendsen P, Moestrup SK (2013) The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxidative Med Cell Longev 2013:523652

    Article  Google Scholar 

  19. Burdo TH, Weiffenbach A, Woods SP, Letendre S, Ellis RJ, Williams KC (2013) Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. Aids 27:1387–1395

    Article  CAS  Google Scholar 

  20. Lange C, Storkebaum E, de Almodovar CR, Dewerchin M, Carmeliet P (2016) Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat Rev Neurol 12:439–454

    Article  CAS  Google Scholar 

  21. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75:2087–2096

    Article  CAS  Google Scholar 

  22. Samuels DC, Kallianpur AR, Ellis RJ, Bush WS, Letendre S, Franklin D, Grant I, Hulgan T (2016) European mitochondrial DNA haplogroups are associated with cerebrospinal fluid biomarkers of inflammation in HIV infection. Pathog Immun 1:330–351

    Article  Google Scholar 

  23. Hulgan T, Samuels DC, Bush W, Ellis RJ, Letendre SL, Heaton RK, Franklin DR, Straub P et al (2015) Mitochondrial DNA haplogroups and neurocognitive impairment during HIV infection. Clin Infect Dis 61:1476–1484

    Article  CAS  Google Scholar 

  24. Kallianpur AR, Wang Q, Jia P, Hulgan T, Zhao Z, Letendre SL, Ellis RJ, Heaton RK et al (2016) Anemia and red blood cell indices predict HIV-associated neurocognitive impairment in the highly active antiretroviral therapy era. J Infect Dis 213:1065–1073

    Article  Google Scholar 

  25. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799

    Article  CAS  Google Scholar 

  26. Jia P, Zhao Z, Hulgan T, Bush WS, Samuels DC, Bloss CS, Heaton RK, Ellis RJ et al (2017) Genome-wide association study of HIV-associated neurocognitive disorder (HAND): a CHARTER group study. Am J Med Genet B Neuropsychiatr Genet 174:413–426

    Article  CAS  Google Scholar 

  27. Jiang R, Hua C, Wan Y, Jiang B, Hu H, Zheng J, Fuqua BK, Dunaief JL et al (2015) Hephaestin and ceruloplasmin play distinct but interrelated roles in iron homeostasis in mouse brain. J Nutr 145:1003–1009

    Article  CAS  Google Scholar 

  28. Rozek W, Horning J, Anderson J, Ciborowski P (2008) Sera proteomic biomarker profiling in HIV-1 infected subjects with cognitive impairment. Proteomics Clin Appl 2:1498–1507

    Article  CAS  Google Scholar 

  29. McCarthy RC, Kosman DJ (2015) Iron transport across the blood–brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci 72:709–727

    Article  CAS  Google Scholar 

  30. Marques L, Auriac A, Willemetz A, Banha J, Silva B, Canonne-Hergaux F, Costa L (2012) Immune cells and hepatocytes express glycosylphosphatidylinositol-anchored ceruloplasmin at their cell surface. Blood Cells Mol Dis 48:110–120

    Article  CAS  Google Scholar 

  31. Burdo TH, Lackner A, Williams KC (2013) Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol Rev 254:102–113

    Article  Google Scholar 

  32. Texel SJ, Camandola S, Ladenheim B, Rothman SM, Mughal MR, Unger EL, Cadet JL, Mattson MP (2012) Ceruloplasmin deficiency results in an anxiety phenotype involving deficits in hippocampal iron, serotonin, and BDNF. J Neurochem 120:125–134

    Article  CAS  Google Scholar 

  33. Kallianpur AR, Levine AJ (2014) Host genetic factors predisposing to HIV-associated neurocognitive disorder. Current HIV/AIDS reports 11:336–352

    Article  Google Scholar 

  34. Kallianpur AR, C. J., Coe CC, Gelman BB (2014) Brain iron transport is associated with neurocognitive performance in HIV/AIDS. In 21st conference on retroviruses and opportunistic infections; March 5–8, Boston, MA, USA.

  35. Harned J, Ferrell J, Nagar S, Goralska M, Fleisher LN, McGahan MC (2012) Ceruloplasmin alters intracellular iron regulated proteins and pathways: ferritin, transferrin receptor, glutamate and hypoxia-inducible factor-1alpha. Exp Eye Res 97:90–97

    Article  CAS  Google Scholar 

  36. Wang H, Li C, Wang H, Mei F, Liu Z, Shen HY, Xiao L (2013) Cuprizone-induced demyelination in mice: age-related vulnerability and exploratory behavior deficit. Neurosci Bull 29:251–259

    Article  Google Scholar 

  37. Ayton S, Zhang M, Roberts BR, Lam LQ, Lind M, McLean C, Bush AI, Frugier T et al (2014) Ceruloplasmin and beta-amyloid precursor protein confer neuroprotection in traumatic brain injury and lower neuronal iron. Free Radic Biol Med 69:331–337

    Article  CAS  Google Scholar 

  38. Granziera C, Daducci A, Simioni S, Cavassini M, Roche A, Meskaldji D, Kober T, Metral M et al (2013) Micro-structural brain alterations in aviremic HIV+ patients with minor neurocognitive disorders: a multi-contrast study at high field. PLoS One 8:e72547

    Article  CAS  Google Scholar 

  39. Lee KH, Yun SJ, Nam KN, Gho YS, Lee EH (2007) Activation of microglial cells by ceruloplasmin. Brain Res 1171:1–8

    Article  CAS  Google Scholar 

  40. Potter MC, Figuera-Losada M, Rojas C, Slusher BS (2013) Targeting the glutamatergic system for the treatment of HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol 8:594–607

    Article  Google Scholar 

  41. Gill AJ, Kovacsics CE, Cross SA, Vance PJ, Kolson LL, Jordan-Sciutto KL, Gelman BB, Kolson DL (2014) Heme oxygenase-1 deficiency accompanies neuropathogenesis of HIV-associated neurocognitive disorders. J Clin Invest 124:4459–4472

    Article  CAS  Google Scholar 

  42. Wobeto VPD, Zaccariotto TR, Sonati MDF (2008) Polymorphism of human haptoglobin and its clinical importance. Genet Mol Biol 31:602–620

    Article  CAS  Google Scholar 

  43. Awadallah SM, Nimer NA, Atoum MF, Saleh SA (2011) Association of haptoglobin phenotypes with ceruloplasmin ferroxidase activity in beta-thalassemia major. Clin Chimica Acta; Int J Clin Chem 412:975–979

    Article  CAS  Google Scholar 

  44. Moestrup SK, Moller HJ (2004) CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med 36:347–354

    Article  CAS  Google Scholar 

  45. Spitsin S, Stevens KE, Douglas SD (2013) Expression of substance P, neurokinin-1 receptor and immune markers in the brains of individuals with HIV-associated neuropathology. J Neurol Sci 334:18–23

    Article  CAS  Google Scholar 

  46. Tuluc F, Meshki J, Spitsin S, Douglas SD (2014) HIV infection of macrophages is enhanced in the presence of increased expression of CD163 induced by substance P. J Leukoc Biol 96:143–150

    Article  Google Scholar 

  47. Tippett E, Cheng WJ, Westhorpe C, Cameron PU, Brew BJ, Lewin SR, Jaworowski A, Crowe SM (2011) Differential expression of CD163 on monocyte subsets in healthy and HIV-1 infected individuals. PLoS One 6:e19968

    Article  CAS  Google Scholar 

  48. Vallon M, Chang J, Zhang H, Kuo CJ (2014) Developmental and pathological angiogenesis in the central nervous system. Cell Mol Life Sci 71:3489–3506

    Article  CAS  Google Scholar 

  49. Sporer B, Koedel U, Paul R, Eberle J, Arendt G, Pfister HW (2004) Vascular endothelial growth factor (VEGF) is increased in serum, but not in cerebrospinal fluid in HIV associated CNS diseases. J Neurol Neurosurg Psychiatry 75:298–300

    Article  CAS  Google Scholar 

  50. Rosenberg GA (2012) Neurological diseases in relation to the blood–brain barrier. J Cereb Blood Flow Metab 32:1139–1151

    Article  CAS  Google Scholar 

  51. Scheidegger P, Weiglhofer W, Suarez S, Console S, Waltenberger J, Pepper MS, Jaussi R, Ballmer-Hofer K (2001) Signalling properties of an HIV-encoded angiogenic peptide mimicking vascular endothelial growth factor activity. Biochem J 353:569–578

    Article  CAS  Google Scholar 

  52. Khan NA, Di Cello F, Nath A, Kim KS (2003) Human immunodeficiency virus type 1 tat-mediated cytotoxicity of human brain microvascular endothelial cells. J Neurovirol 9:584–593

    Article  CAS  Google Scholar 

  53. Capo CR, Arciello M, Squitti R, Cassetta E, Rossini PM, Calabrese L, Rossi L (2008) Features of ceruloplasmin in the cerebrospinal fluid of Alzheimer's disease patients. Biometals 21:367–372

    Article  CAS  Google Scholar 

  54. Rahimy E, Li FY, Hagberg L, Fuchs D, Robertson K, Meyerhoff DJ, Zetterberg H, Price RW et al (2017) Blood–brain barrier disruption is initiated during primary HIV infection and not rapidly altered by antiretroviral therapy. J Infect Dis 215:1132–1140

    Article  CAS  Google Scholar 

  55. Borda JT, Alvarez X, Mohan M, Hasegawa A, Bernardino A, Jean S, Aye P, Lackner AA (2008) CD163, a marker of perivascular macrophages, is up-regulated by microglia in simian immunodeficiency virus encephalitis after haptoglobin–hemoglobin complex stimulation and is suggestive of breakdown of the blood–brain barrier. Am J Pathol 172:725–737

    Article  CAS  Google Scholar 

  56. Zhao X, Song S, Sun G, Strong R, Zhang J, Grotta JC, Aronowski J (2009) Neuroprotective role of haptoglobin after intracerebral hemorrhage. J Neurosci 29:15819–15827

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to all CHARTER study participants. They also wish to acknowledge the following CHARTER study site PIs at participating institutions: Justin McArthur (Johns Hopkins University School of Medicine, Baltimore, MD), Susan Morgello and David Simpson (Icahn School of Mt. Sinai, New York, NY), J. Allen McCutchan (University of California–San Diego, San Diego, CA), Ann Collier and Christina Marra (University of Washington, Seattle, WA), David Clifford (Washington University, St. Louis, MO), and Benjamin Gelman (University of Texas Medical Branch, Galveston, TX).

Funding

Funding for this study was provided by National Institutes of Health (NIH) R01 MH095621 (to T. Hulgan and A. Kallianpur), NIH N01 MH22005, HHSN271201000036C, and HHSN271201000030C (PI, I. Grant), NIH R01 MH107345 (PIs, S. Letendre and R. Heaton), and K24 MH097673 (PI, S. Letendre).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

AK and TH designed, coordinated, and funded this study, and AK wrote the manuscript. HRG performed the analysis under the direction of JBS and AK and assisted in writing the statistical methods. DRF and DRC coordinated the selection of CSF samples, and DRC and SLL oversaw the laboratory assays. TH helped edit the manuscript. RJE, TH, SM, and JRC provided helpful comments on the manuscript. All remaining co-authors are CHARTER study investigators and/or site PIs, who assisted in the enrollment of participants and collection of primary data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. R. Kallianpur.

Ethics declarations

Ethics Approval and Consent to Participate

The CHARTER study abides by the principles set forth in the Declaration of Helsinki. All study participants provided written informed consent, and only de-identified data was used in the present analysis. The Institutional Review Boards of all participating institutions approved the study.

Consent for Publication

All subjects provided written informed consent to participate in the study. No individual’s protected health information is included in this report.

Conflicts of Interest

The authors declare that they have no potential conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallianpur, A.R., Gittleman, H., Letendre, S. et al. Cerebrospinal Fluid Ceruloplasmin, Haptoglobin, and Vascular Endothelial Growth Factor Are Associated with Neurocognitive Impairment in Adults with HIV Infection. Mol Neurobiol 56, 3808–3818 (2019). https://doi.org/10.1007/s12035-018-1329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1329-9

Keywords

Navigation