Skip to main content

Advertisement

Log in

Ketamine Self-Administration Elevates αCaMKII Autophosphorylation in Mood and Reward-Related Brain Regions in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Modulation of αCaMKII expression and phosphorylation is a feature shared by drugs of abuse with different mechanisms of action. Accordingly, we investigated whether αCaMKII expression and activation could be altered by self-administration of ketamine, a non-competitive antagonist of the NMDA glutamate receptor, with antidepressant and psychotomimetic as well as reinforcing properties. Rats self-administered ketamine at a sub-anesthetic dose for 43 days and were sacrificed 24 h after the last drug exposure; reward-related brain regions, such as medial prefrontal cortex (PFC), ventral striatum (vS), and hippocampus (Hip), were used for the measurement of αCaMKII-mediated signaling. αCaMKII phosphorylation was increased in these brain regions suggesting that ketamine, similarly to other reinforcers, activates this kinase. We next measured the two main targets of αCaMKII, i.e., GluN2B (S1303) and GluA1 (S831), and found increased activation of GluN2B (S1303) together with reduced phosphorylation of GluA1 (S831). Since GluN2B, via inhibition of ERK, regulates the membrane expression of GluA1, we measured ERK2 phosphorylation in the crude synaptosomal fraction of these brain regions, which was significantly reduced suggesting that ketamine-induced phosphorylation of αCaMKII promotes GluN2B (S1303) phosphorylation that, in turn, inhibits ERK 2 signaling, an effect that results in reduced membrane expression and phosphorylation of GluA1. Taken together, our findings point to αCaMKII autophosphorylation as a critical signature of ketamine self-administration providing an intracellular mechanism to explain the different effects caused by αCaMKII autophosphorylation on the post-synaptic GluN2B- and GluA1-mediated functions. These data add ketamine to the list of drugs of abuse converging on αCaMKII to sustain their addictive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Herring BE, Nicoll RA (2016) Long-term potentiation: from camkii to ampa receptor trafficking. Annu Rev Physiol 78:351–365

    Article  PubMed  CAS  Google Scholar 

  2. Colbran RJ, Brown AM (2004) Calcium/calmodulin-dependent protein kinase ii and synaptic plasticity. Curr Opin Neurobiol 14:318–327

    Article  PubMed  CAS  Google Scholar 

  3. Li CY, Mao X, Wei L (2008) Genes and (common) pathways underlying drug addiction. PLoS Comput Biol 4:e2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Easton AC, Lourdusamy A, Havranek M, Mizuno K, Solati J, Golub Y, Clarke TK, Vallada H et al (2014) Alphacamkii controls the establishment of cocaine’s reinforcing effects in mice and humans. Transl Psychiatry 4:e457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wang L, Lv Z, Hu Z, Sheng J, Hui B, Sun J, Ma L (2010) Chronic cocaine-induced h3 acetylation and transcriptional activation of camkiialpha in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology 35:913–928

    Article  PubMed  CAS  Google Scholar 

  6. Anderson SM, Famous KR, Sadri-Vakili G, Kumaresan V, Schmidt HD, Bass CE, Terwilliger EF, Cha JH et al (2008) Camkii: A biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nat Neurosci 11:344–353

    Article  PubMed  CAS  Google Scholar 

  7. Caffino L, Cassina C, Giannotti G, Orru A, Moro F, Di Clemente A, Racagni G, Fumagalli F et al (2014) Short-term abstinence from cocaine self-administration, but not passive cocaine infusion, elevates alphacamkii autophosphorylation in the rat nucleus accumbens and medial prefrontal cortex. Int J Neuropsychopharmacol 17:323–329

    Article  PubMed  CAS  Google Scholar 

  8. Rich MT, Abbott TB, Chung L, Gulcicek EE, Stone KL, Colangelo CM, Lam TT, Nairn AC et al (2016) Phosphoproteomic analysis reveals a novel mechanism of camkiialpha regulation inversely induced by cocaine memory extinction versus reconsolidation. J Neurosci 36:7613–7627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Garcia-Pardo MP, Roger-Sanchez C, Rodriguez-Arias M, Minarro J, Aguilar MA (2016) Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates. Eur J Pharmacol 781:10–24

    Article  PubMed  CAS  Google Scholar 

  10. Easton AC, Lucchesi W, Lourdusamy A, Lenz B, Solati J, Golub Y, Lewczuk P, Fernandes C et al (2013) Alphacamkii autophosphorylation controls the establishment of alcohol drinking behavior. Neuropsychopharmacology 38:1636–1647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Easton AC, Lucchesi W, Mizuno K, Fernandes C, Schumann G, Giese KP, Muller CP (2013) Alphacamkii autophosphorylation controls the establishment of alcohol-induced conditioned place preference in mice. Behav Brain Res 252:72–76

    Article  PubMed  CAS  Google Scholar 

  12. Schopf I, Easton AC, Solati J, Golub Y, Kornhuber J, Giese KP, Muller CP (2015) Alphacamkii autophosphorylation mediates neuronal activation in the hippocampal dentate gyrus after alcohol and cocaine in mice. Neurosci Lett 591:65–68

    Article  PubMed  CAS  Google Scholar 

  13. Salling MC, Faccidomo SP, Li C, Psilos K, Galunas C, Spanos M, Agoglia AE, Kash TL et al (2016) Moderate alcohol drinking and the amygdala proteome: Identification and validation of calcium/calmodulin dependent kinase ii and ampa receptor activity as novel molecular mechanisms of the positive reinforcing effects of alcohol. Biol Psychiatry 79:430–442

    Article  PubMed  CAS  Google Scholar 

  14. Nutt D, King LA, Saulsbury W, Blakemore C (2007) Development of a rational scale to assess the harm of drugs of potential misuse. Lancet 369:1047–1053

    Article  PubMed  Google Scholar 

  15. Ng SH, Tse ML, Ng HW, Lau FL (2010) Emergency department presentation of ketamine abusers in hong kong: A review of 233 cases. Hong Kong Med J 16:6–11

    PubMed  CAS  Google Scholar 

  16. Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Caffino L, Piva A, Giannotti G, Di Chio M, Mottarlini F, Venniro M, Yew DT, Chiamulera C, Fumagalli F (2016) Ketamine self-administration reduces the homeostasis of the glutamate synapse in the rat brain. Mol Neurobiol

  18. Molteni R, Pasini M, Moraschi S, Gennarelli M, Drago F, Racagni G, Riva MA (2008) Reduced activation of intracellular signaling pathways in rat prefrontal cortex after chronic phencyclidine administration. Pharmacol Res 57:296–302

    Article  PubMed  CAS  Google Scholar 

  19. Corbit LH, Balleine BW (2000) The role of the hippocampus in instrumental conditioning. J Neurosci 20:4233–4239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Xie X, Wells AM, Fuchs RA (2014) Cocaine seeking and taking: role of hippocampal dopamine d1-like receptors. Int J Neuropsychopharmacol 17:1533–1538

    Article  PubMed  CAS  Google Scholar 

  21. Kutlu MG, Gould TJ (2016) Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem 23:515–533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Goodman J, Packard MG (2016) Memory systems and the addicted brain. Front Psychiatry 7:24

    Article  PubMed  PubMed Central  Google Scholar 

  23. Muller CP, Quednow BB, Lourdusamy A, Kornhuber J, Schumann G, Giese KP (2016) Cam kinases: from memories to addiction. Trends Pharmacol Sci 37:153–166

    Article  PubMed  CAS  Google Scholar 

  24. Castilla-Ortega E, Ladron de Guevara-Miranda D, Serrano A, Pavon FJ, Suarez J, Rodriguez de Fonseca F, Santin LJ (2017) The impact of cocaine on adult hippocampal neurogenesis: potential neurobiological mechanisms and contributions to maladaptive cognition in cocaine addiction disorder. Biochem Pharmacol

  25. Halt AR, Dallapiazza RF, Zhou Y, Stein IS, Qian H, Juntti S, Wojcik S, Brose N et al (2012) Camkii binding to glun2b is critical during memory consolidation. EMBO J 31:1203–1216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Barcomb K, Hell JW, Benke TA, Bayer KU (2016) The camkii/glun2b protein interaction maintains synaptic strength. J Biol Chem 291:16082–16089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Olivito L, Saccone P, Perri V, Bachman JL, Fragapane P, Mele A, Huganir RL, De Leonibus E (2016) Phosphorylation of the ampa receptor glua1 subunit regulates memory load capacity. Brain Struct Funct 221:591–603

    Article  PubMed  CAS  Google Scholar 

  28. Chen BS, Roche KW (2007) Regulation of nmda receptors by phosphorylation. Neuropharmacology 53:362–368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Banke TG, Bowie D, Lee H, Huganir RL, Schousboe A, Traynelis SF (2000) Control of glur1 ampa receptor function by camp-dependent protein kinase. J Neurosci 20:89–102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Derkach V, Barria A, Soderling TR (1999) Ca2+/calmodulin-kinase ii enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci U S A 96:3269–3274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Fumagalli F, Pasini M, Frasca A, Drago F, Racagni G, Riva MA (2009) Prenatal stress alters glutamatergic system responsiveness in adult rat prefrontal cortex. J Neurochem 109:1733–1744

    Article  PubMed  CAS  Google Scholar 

  32. Fumagalli F, Caffino L, Vogt MA, Frasca A, Racagni G, Sprengel R, Gass P, Riva MA (2011) Ampa glur-a receptor subunit mediates hippocampal responsiveness in mice exposed to stress. Hippocampus 21:1028–1035

    PubMed  CAS  Google Scholar 

  33. Kim MJ, Dunah AW, Wang YT, Sheng M (2005) Differential roles of nr2a- and nr2b-containing NMDA receptors in ras-erk signaling and ampa receptor trafficking. Neuron 46:745–760

    Article  PubMed  CAS  Google Scholar 

  34. Venniro M, Mutti A, Chiamulera C (2015) Pharmacological and non-pharmacological factors that regulate the acquisition of ketamine self-administration in rats. Psychopharmacology 232:4505–4514

    Article  PubMed  CAS  Google Scholar 

  35. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, fifth edn. Academic Press, New York

    Google Scholar 

  36. Hall RA, Soderling TR (1997) Differential surface expression and phosphorylation of the n-methyl-d-aspartate receptor subunits nr1 and nr2 in cultured hippocampal neurons. J Biol Chem 272:4135–4140

    Article  PubMed  CAS  Google Scholar 

  37. Omkumar RV, Kiely MJ, Rosenstein AJ, Min KT, Kennedy MB (1996) Identification of a phosphorylation site for calcium/calmodulindependent protein kinase ii in the nr2b subunit of the n-methyl-d-aspartate receptor. J Biol Chem 271:31670–31678

    Article  PubMed  CAS  Google Scholar 

  38. Raveendran R, Devi Suma Priya S, Mayadevi M, Steephan M, Santhoshkumar TR, Cheriyan J, Sanalkumar R, Pradeep KK et al (2009) Phosphorylation status of the nr2b subunit of NMDA receptor regulates its interaction with calcium/calmodulin-dependent protein kinase ii. J Neurochem 110:92–105

    Article  PubMed  CAS  Google Scholar 

  39. Strack S, McNeill RB, Colbran RJ (2000) Mechanism and regulation of calcium/calmodulin-dependent protein kinase ii targeting to the nr2b subunit of the n-methyl-d-aspartate receptor. J Biol Chem 275:23798–23806

    Article  PubMed  CAS  Google Scholar 

  40. Barcomb K, Buard I, Coultrap SJ, Kulbe JR, O'Leary H, Benke TA, Bayer KU (2014) Autonomous camkii requires further stimulation by ca2+/calmodulin for enhancing synaptic strength. FASEB J 28:3810–3819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Coultrap SJ, Buard I, Kulbe JR, Dell'Acqua ML, Bayer KU (2010) Camkii autonomy is substrate-dependent and further stimulated by ca2+/calmodulin. J Biol Chem 285:17930–17937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wolf ME (2002) Addiction: making the connection between behavioral changes and neuronal plasticity in specific pathways. Mol Interv 2:146–157

    Article  PubMed  CAS  Google Scholar 

  43. Caffino L, Di Chio M, Giannotti G, Venniro M, Mutti A, Padovani L, Cheung D, Fumagalli GF et al (2016) The modulation of bdnf expression and signalling dissects the antidepressant from the reinforcing properties of ketamine: effects of single infusion vs. chronic self-administration in rats. Pharmacol Res 104:22–30

    Article  PubMed  CAS  Google Scholar 

  44. Cui X, Li J, Li T, Ji F, Bu X, Zhang N, Zhang B (2009) Propofol and ketamine-induced anesthetic depth-dependent decrease of camkii phosphorylation levels in rat hippocampus and cortex. J Neurosurg Anesthesiol 21:145–154

    Article  PubMed  Google Scholar 

  45. Huang L, Hayes S, Yang G (2017) Long-lasting behavioral effects in neonatal mice with multiple exposures to ketamine-xylazine anesthesia. Neurotoxicol Teratol 60:75–81

    Article  PubMed  CAS  Google Scholar 

  46. Pi HJ, Otmakhov N, El Gaamouch F, Lemelin D, De Koninck P, Lisman J (2010) Camkii control of spine size and synaptic strength: role of phosphorylation states and nonenzymatic action. Proc Natl Acad Sci U S A 107:14437–14442

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shioda N, Beppu H, Fukuda T, Li E, Kitajima I, Fukunaga K (2011) Aberrant calcium/calmodulin-dependent protein kinase ii (camkii) activity is associated with abnormal dendritic spine morphology in the atrx mutant mouse brain. J Neurosci 31:346–358

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Yabuki Y, Shioda N, Maeda T, Hiraide S, Togashi H, Fukunaga K (2014) Aberrant camkii activity in the medial prefrontal cortex is associated with cognitive dysfunction in adhd model rats. Brain Res 1557:90–100

    Article  PubMed  CAS  Google Scholar 

  49. Robison AJ (2014) Emerging role of camkii in neuropsychiatric disease. Trends Neurosci 37:653–662

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Zardi-Gori Foundation for funding this project through a grant to FF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Fumagalli.

Ethics declarations

All animal procedures were carried out in accordance with the principles of laboratory animal care (NIH publication No. 85-23, revised 1985), the European Communities Council Directive (2010/63/UE). All efforts were made to minimize animal suffering and to keep the lowest number of animals used.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Cristiano Chiamulera and Fabio Fumagalli share the senior authorship

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caffino, L., Piva, A., Mottarlini, F. et al. Ketamine Self-Administration Elevates αCaMKII Autophosphorylation in Mood and Reward-Related Brain Regions in Rats. Mol Neurobiol 55, 5453–5461 (2018). https://doi.org/10.1007/s12035-017-0772-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0772-3

Keywords

Navigation