Skip to main content
Log in

Transgenerational Inheritance of Paternal Neurobehavioral Phenotypes: Stress, Addiction, Ageing and Metabolism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Epigenetic modulation is found to get involved in multiple neurobehavioral processes. It is believed that different types of environmental stimuli could alter the epigenome of the whole brain or related neural circuits, subsequently contributing to the long-lasting neural plasticity of certain behavioral phenotypes. While the maternal influence on the health of offsprings has been long recognized, recent findings highlight an alternative way for neurobehavioral phenotypes to be passed on to the next generation, i.e., through the male germ line. In this review, we focus specifically on the transgenerational modulation induced by environmental stress, drugs of abuse, and other physical or mental changes (e.g., ageing, metabolism, fear) in fathers, and recapitulate the underlying mechanisms potentially mediating the alterations in epigenome or gene expression of offsprings. Together, these findings suggest that the inheritance of phenotypic traits through male germ-line epigenome may represent the unique manner of adaptation during evolution. Hence, more attention should be paid to the paternal health, given its equivalently important role in affecting neurobehaviors of descendants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bale TL (2015) Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 16(6):332–344. doi:10.1038/nrn3818

    Article  CAS  PubMed  Google Scholar 

  2. Klengel T, Binder EB (2015) Epigenetics of stress-related psychiatric disorders and gene x environment interactions. Neuron 86(6):1343–1357. doi:10.1016/j.neuron.2015.05.036

    Article  CAS  PubMed  Google Scholar 

  3. Day JJ, Childs D, Guzman-Karlsson MC, Kibe M, Moulden J, Song E, Tahir A, Sweatt JD (2013) DNA methylation regulates associative reward learning. Nat Neurosci 16(10):1445–1452. doi:10.1038/nn.3504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma DK, Jang MH, Guo JU, Kitabatake Y, Chang ML, Pow-Anpongkul N, Flavell RA, Lu B et al (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323(5917):1074–1077. doi:10.1126/science.1166859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y et al (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243):55–60. doi:10.1038/nature07925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Monteggia LM, Kavalali ET (2009) Rett syndrome and the impact of MeCP2 associated transcriptional mechanisms on neurotransmission. Biol Psychiatry 65(3):204–210. doi:10.1016/j.biopsych.2008.10.036

    Article  CAS  PubMed  Google Scholar 

  7. Golden SA, Christoffel DJ, Heshmati M, Hodes GE, Magida J, Davis K, Cahill ME, Dias C et al (2013) Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nat Med 19(3):337–344. doi:10.1038/nm.3090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marques SC, Oliveira CR, Pereira CM, Outeiro TF (2011) Epigenetics in neurodegeneration: a new layer of complexity. Prog Neuropsychopharmacol Biol Psychiatry 35(2):348–355. doi:10.1016/j.pnpbp.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  9. Kwok JB (2010) Role of epigenetics in Alzheimer’s and Parkinson’s disease. Epigenomics 2(5):671–682. doi:10.2217/epi.10.43

    Article  CAS  PubMed  Google Scholar 

  10. Bale TL (2014) Lifetime stress experience: transgenerational epigenetics and germ cell programming. Dialogues Clin Neurosci 16(3):297–305

    PubMed  PubMed Central  Google Scholar 

  11. Skinner MK (2014) Environmental stress and epigenetic transgenerational inheritance. BMC Med 12(1):153. doi:10.1186/s12916-014-0153-y

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dias BG, Ressler KJ (2014) Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 17(1):89–96. doi:10.1038/nn.3594

    Article  CAS  PubMed  Google Scholar 

  13. Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ (2010) Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467(7318):963–966. doi:10.1038/nature09491

    Article  CAS  PubMed  Google Scholar 

  14. Sharma A (2013) Transgenerational epigenetic inheritance: focus on soma to germline information transfer. Prog Biophys Mol Biol 113(3):439–446. doi:10.1016/j.pbiomolbio.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  15. Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84(2):131–176

    Article  PubMed  Google Scholar 

  16. Jablonka E (2013) Epigenetic inheritance and plasticity: the responsive germline. Prog Biophys Mol Biol 111(2-3):99–107. doi:10.1016/j.pbiomolbio.2012.08.014

    Article  PubMed  Google Scholar 

  17. Casas E, Vavouri T (2014) Sperm epigenomics: challenges and opportunities. Front Genet 5:330. doi:10.3389/fgene.2014.00330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Daxinger L, Whitelaw E (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 13(3):153–162. doi:10.1038/nrg3188

    Article  CAS  PubMed  Google Scholar 

  19. Szyf M (2015) Nongenetic inheritance and transgenerational epigenetics. Trends Mol Med 21(2):134–144. doi:10.1016/j.molmed.2014.12.004

    Article  PubMed  Google Scholar 

  20. Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157(1):95–109. doi:10.1016/j.cell.2014.02.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11(4):285–296. doi:10.1038/nrg2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van der Heijden GW, Derijck AA, Ramos L, Giele M, van der Vlag J, de Boer P (2006) Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev Biol 298(2):458–469. doi:10.1016/j.ydbio.2006.06.051

    Article  PubMed  CAS  Google Scholar 

  23. Kim VN (2006) Small RNAs just got bigger: Piwiinteracting RNAs (piRNAs) in mammalian testes. Genes Dev 20(15):1993–1997

    Article  CAS  PubMed  Google Scholar 

  24. Yuan TF, Hou G (2015) The effects of stress on glutamatergic transmission in the brain. Mol Neurobiol 51(3):1139–1143. doi:10.1007/s12035-014-8783-9

    Article  CAS  PubMed  Google Scholar 

  25. Nestler EJ (2014) Epigenetic mechanisms of depression. JAMA Psychiatry 71(4):454–456. doi:10.1001/jamapsychiatry.2013.4291

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vialou V, Feng J, Robison AJ, Nestler EJ (2013) Epigenetic mechanisms of depression and antidepressant action. Annu Rev Pharmacol Toxicol 53:59–87. doi:10.1146/annurev-pharmtox-010611-134540

    Article  CAS  PubMed  Google Scholar 

  27. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, Fischer D, Holsboer F, Wotjak CT et al (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12(12):1559–1566. doi:10.1038/nn.2436

    Article  CAS  PubMed  Google Scholar 

  28. Elliott E, Ezra-Nevo G, Regev L, Neufeld-Cohen A, Chen A (2010) Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat Neurosci 13(11):1351–1353. doi:10.1038/nn.2642

    Article  CAS  PubMed  Google Scholar 

  29. LaPlant Q, Vialou V, Covington HE 3rd, Dumitriu D, Feng J, Warren BL, Maze I, Dietz DM et al (2010) Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 13(9):1137–1143. doi:10.1038/nn.2619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee JB, Wei J, Liu W, Cheng J, Feng J, Yan Z (2012) Histone deacetylase 6 gates the synaptic action of acute stress in prefrontal cortex. J Physiol 590(Pt 7):1535–1546. doi:10.1113/jphysiol.2011.224907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525. doi:10.1038/nn1659

    Article  CAS  PubMed  Google Scholar 

  32. Covington HE 3rd, Maze I, LaPlant QC, Vialou VF, Ohnishi YN, Berton O, Fass DM, Renthal W et al (2009) Antidepressant actions of histone deacetylase inhibitors. J Neurosci 29(37):11451–11460. doi:10.1523/JNEUROSCI.1758-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Issler O, Haramati S, Paul ED, Maeno H, Navon I, Zwang R, Gil S, Mayberg HS et al (2014) MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron 83(2):344–360. doi:10.1016/j.neuron.2014.05.042

    Article  CAS  PubMed  Google Scholar 

  34. Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL (2013) Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci 33(21):9003–9012. doi:10.1523/JNEUROSCI.0914-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodgers AB, Morgan CP, Leu NA, Bale TL (2015) Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1508347112

  36. Hou G, Xiong W, Wang M, Chen X, Yuan TF (2014) Chronic stress influences sexual motivation and causes damage to testicular cells in male rats. J Sex Med 11(3):653–663. doi:10.1111/jsm.12416

    Article  PubMed  Google Scholar 

  37. Gollenberg AL, Liu F, Brazil C, Drobnis EZ, Guzick D, Overstreet JW, Redmon JB, Sparks A et al (2010) Semen quality in fertile men in relation to psychosocial stress. Fertil Steril 93(4):1104–1111. doi:10.1016/j.fertnstert.2008.12.018

    Article  PubMed  Google Scholar 

  38. Dietz DM, Laplant Q, Watts EL, Hodes GE, Russo SJ, Feng J, Oosting RS, Vialou V et al (2011) Paternal transmission of stress-induced pathologies. Biol Psychiatry 70(5):408–414. doi:10.1016/j.biopsych.2011.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  39. Franklin TB, Russig H, Weiss IC, Graff J, Linder N, Michalon A, Vizi S, Mansuy IM (2010) Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry 68(5):408–415. doi:10.1016/j.biopsych.2010.05.036

    Article  PubMed  Google Scholar 

  40. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska E et al (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17(5):667–669. doi:10.1038/nn.3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharma U, Rando OJ (2014) Father-son chats: inheriting stress through sperm RNA. Cell Metab 19(6):894–895. doi:10.1016/j.cmet.2014.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bohacek J, Farinelli M, Mirante O, Steiner G, Gapp K, Coiret G, Ebeling M, Duran-Pacheco G et al (2015) Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress. Mol Psychiatry 20(5):621–631. doi:10.1038/mp.2014.80

    Article  CAS  PubMed  Google Scholar 

  43. Robison AJ, Nestler EJ (2011) Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 12(11):623–637. doi:10.1038/nrn3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nestler EJ (2014) Epigenetic mechanisms of drug addiction. Neuropharmacology 76 Pt B:259-268. doi:10.1016/j.neuropharm.2013.04.004

  45. Feng J, Nestler EJ (2013) Epigenetic mechanisms of drug addiction. Curr Opin Neurobiol 23(4):521–528. doi:10.1016/j.conb.2013.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anier K, Malinovskaja K, Aonurm-Helm A, Zharkovsky A, Kalda A (2010) DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology 35(12):2450–2461. doi:10.1038/npp.2010.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Deng JV, Rodriguiz RM, Hutchinson AN, Kim IH, Wetsel WC, West AE (2010) MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat Neurosci 13(9):1128–1136. doi:10.1038/nn.2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, Truong HT, Russo SJ, Laplant Q et al (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48(2):303–314. doi:10.1016/j.neuron.2005.09.023

    Article  CAS  PubMed  Google Scholar 

  49. Shen HY, Kalda A, Yu L, Ferrara J, Zhu J, Chen JF (2008) Additive effects of histone deacetylase inhibitors and amphetamine on histone H4 acetylation, cAMP responsive element binding protein phosphorylation and DeltaFosB expression in the striatum and locomotor sensitization in mice. Neuroscience 157(3):644–655. doi:10.1016/j.neuroscience.2008.09.019

    Article  CAS  PubMed  Google Scholar 

  50. Schroeder FA, Penta KL, Matevossian A, Jones SR, Konradi C, Tapper AR, Akbarian S (2008) Drug-induced activation of dopamine D(1) receptor signaling and inhibition of class I/II histone deacetylase induce chromatin remodeling in reward circuitry and modulate cocaine-related behaviors. Neuropsychopharmacology 33(12):2981–2992. doi:10.1038/npp.2008.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun H, Maze I, Dietz DM, Scobie KN, Kennedy PJ, Damez-Werno D, Neve RL, Zachariou V et al (2012) Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens. J Neurosci 32(48):17454–17464. doi:10.1523/JNEUROSCI.1357-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang L, Lv Z, Hu Z, Sheng J, Hui B, Sun J, Ma L (2010) Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology 35(4):913–928. doi:10.1038/npp.2009.193

    Article  CAS  PubMed  Google Scholar 

  53. Malvaez M, Mhillaj E, Matheos DP, Palmery M, Wood MA (2011) CBP in the nucleus accumbens regulates cocaine-induced histone acetylation and is critical for cocaine-associated behaviors. J Neurosci 31(47):16941–16948. doi:10.1523/JNEUROSCI.2747-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Malvaez M, McQuown SC, Rogge GA, Astarabadi M, Jacques V, Carreiro S, Rusche JR, Wood MA (2013) HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci U S A 110(7):2647–2652. doi:10.1073/pnas.1213364110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Renthal W, Maze I, Krishnan V, Covington HE 3rd, Xiao G, Kumar A, Russo SJ, Graham A et al (2007) Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56(3):517–529. doi:10.1016/j.neuron.2007.09.032

    Article  CAS  PubMed  Google Scholar 

  56. Kennedy PJ, Feng J, Robison AJ, Maze I, Badimon A, Mouzon E, Chaudhury D, Damez-Werno DM et al (2013) Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nat Neurosci 16(4):434–440. doi:10.1038/nn.3354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Renthal W, Kumar A, Xiao G, Wilkinson M, Covington HE 3rd, Maze I, Sikder D, Robison AJ et al (2009) Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 62(3):335–348. doi:10.1016/j.neuron.2009.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Renthal W, Carle TL, Maze I, Covington HE 3rd, Truong HT, Alibhai I, Kumar A, Montgomery RL et al (2008) Delta FosB mediates epigenetic desensitization of the c-fos gene after chronic amphetamine exposure. J Neurosci 28(29):7344–7349. doi:10.1523/JNEUROSCI.1043-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maze I, Covington HE 3rd, Dietz DM, LaPlant Q, Renthal W, Russo SJ, Mechanic M, Mouzon E et al (2010) Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327(5962):213–216. doi:10.1126/science.1179438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Robison AJ, Vialou V, Mazei-Robison M, Feng J, Kourrich S, Collins M, Wee S, Koob G et al (2013) Behavioral and structural responses to chronic cocaine require a feedforward loop involving DeltaFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell. J Neurosci 33(10):4295–4307. doi:10.1523/JNEUROSCI.5192-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Luscher C, Malenka RC (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69(4):650–663. doi:10.1016/j.neuron.2011.01.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chandrasekar V, Dreyer JL (2009) microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci 42(4):350–362. doi:10.1016/j.mcn.2009.08.009

    Article  CAS  PubMed  Google Scholar 

  63. Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q, Willoughby D, Wahlestedt C et al (2010) Striatal microRNA controls cocaine intake through CREB signalling. Nature 466(7303):197–202. doi:10.1038/nature09202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jonkman S, Kenny PJ (2013) Molecular, cellular, and structural mechanisms of cocaine addiction: a key role for microRNAs. Neuropsychopharmacology 38(1):198–211. doi:10.1038/npp.2012.120

    Article  CAS  PubMed  Google Scholar 

  65. Schaefer A, Im HI, Veno MT, Fowler CD, Min A, Intrator A, Kjems J, Kenny PJ et al (2010) Argonaute 2 in dopamine 2 receptor-expressing neurons regulates cocaine addiction. J Exp Med 207(9):1843–1851. doi:10.1084/jem.20100451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saba R, Storchel PH, Aksoy-Aksel A, Kepura F, Lippi G, Plant TD, Schratt GM (2012) Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol 32(3):619–632. doi:10.1128/MCB.05896-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vassoler FM, White SL, Schmidt HD, Sadri-Vakili G, Pierce RC (2013) Epigenetic inheritance of a cocaine-resistance phenotype. Nat Neurosci 16(1):42–47. doi:10.1038/nn.3280

    Article  CAS  PubMed  Google Scholar 

  68. Sasaki A, Constantinof A, Pan P, Kupferschmidt DA, McGowan PO, Erb S (2014) Cocaine exposure prior to pregnancy alters the psychomotor response to cocaine and transcriptional regulation of the dopamine D1 receptor in adult male offspring. Behav Brain Res 265:163–170. doi:10.1016/j.bbr.2014.02.017

    Article  CAS  PubMed  Google Scholar 

  69. Abel EL (1993) Rat offspring sired by males treated with alcohol. Alcohol 10(3):237–242

    Article  CAS  PubMed  Google Scholar 

  70. Abel EL (1989) Paternal and maternal alcohol consumption: effects on offspring in two strains of rats. Alcohol Clin Exp Res 13(4):533–541

    Article  CAS  PubMed  Google Scholar 

  71. Finegersh A, Homanics GE (2014) Paternal alcohol exposure reduces alcohol drinking and increases behavioral sensitivity to alcohol selectively in male offspring. PLoS One 9(6):e99078. doi:10.1371/journal.pone.0099078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Lu H, Lim B, Poo MM (2009) Cocaine exposure in utero alters synaptic plasticity in the medial prefrontal cortex of postnatal rats. J Neurosci 29(40):12664–12674. doi:10.1523/JNEUROSCI.1984-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Buckingham-Howes S, Berger SS, Scaletti LA, Black MM (2013) Systematic review of prenatal cocaine exposure and adolescent development. Pediatrics 131(6):e1917–1936. doi:10.1542/peds.2012-0945

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lambert BL, Bauer CR (2012) Developmental and behavioral consequences of prenatal cocaine exposure: a review. J Perinatol 32(11):819–828. doi:10.1038/jp.2012.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bellone C, Mameli M, Luscher C (2011) In utero exposure to cocaine delays postnatal synaptic maturation of glutamatergic transmission in the VTA. Nat Neurosci 14(11):1439–1446. doi:10.1038/nn.2930

    Article  CAS  PubMed  Google Scholar 

  76. Kabir ZD, Katzman AC, Kosofsky BE (2013) Molecular mechanisms mediating a deficit in recall of fear extinction in adult mice exposed to cocaine in utero. PLoS One 8(12):e84165. doi:10.1371/journal.pone.0084165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Foldi CJ, Eyles DW, Flatscher-Bader T, McGrath JJ, Burne TH (2011) New perspectives on rodent models of advanced paternal age: relevance to autism. Front Behav Neurosci 5:32. doi:10.3389/fnbeh.2011.00032

    Article  PubMed  PubMed Central  Google Scholar 

  78. Garcia-Palomares S, Pertusa JF, Minarro J, Garcia-Perez MA, Hermenegildo C, Rausell F, Cano A, Tarin JJ (2009) Long-term effects of delayed fatherhood in mice on postnatal development and behavioral traits of offspring. Biol Reprod 80(2):337–342. doi:10.1095/biolreprod.108.072066

    Article  CAS  PubMed  Google Scholar 

  79. Milekic MH, Xin Y, O'Donnell A, Kumar KK, Bradley-Moore M, Malaspina D, Moore H, Brunner D et al (2015) Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression. Mol Psychiatry 20(8):995–1001. doi:10.1038/mp.2014.84

    Article  CAS  PubMed  Google Scholar 

  80. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308(5727):1466–1469. doi:10.1126/science.1108190

    Article  CAS  PubMed  Google Scholar 

  81. Anway MD, Memon MA, Uzumcu M, Skinner MK (2006) Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J Androl 27(6):868–879. doi:10.2164/jandrol.106.000349

    Article  CAS  PubMed  Google Scholar 

  82. Crews D, Gore AC, Hsu TS, Dangleben NL, Spinetta M, Schallert T, Anway MD, Skinner MK (2007) Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci U S A 104(14):5942–5946. doi:10.1073/pnas.0610410104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Crews D, Gillette R, Scarpino SV, Manikkam M, Savenkova MI, Skinner MK (2012) Epigenetic transgenerational inheritance of altered stress responses. Proc Natl Acad Sci U S A 109(23):9143–9148. doi:10.1073/pnas.1118514109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Skinner MK, Anway MD, Savenkova MI, Gore AC, Crews D (2008) Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PLoS One 3(11):e3745. doi:10.1371/journal.pone.0003745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Skinner MK, Anway MD (2005) Seminiferous cord formation and germ-cell programming: epigenetic transgenerational actions of endocrine disruptors. Ann N Y Acad Sci 1061:18–32. doi:10.1196/annals.1336.004

    Article  CAS  PubMed  Google Scholar 

  86. Skinner MK, Manikkam M, Haque MM, Zhang B, Savenkova MI (2012) Epigenetic transgenerational inheritance of somatic transcriptomes and epigenetic control regions. Genome Biol 13(10):R91. doi:10.1186/gb-2012-13-10-r91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guerrero-Bosagna CM, Skinner MK (2009) Epigenetic transgenerational effects of endocrine disruptors on male reproduction. Semin Reprod Med 27(5):403–408. doi:10.1055/s-0029-1237428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK (2010) Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 5(9):e13100. doi:10.1371/journal.pone.0013100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Gillette R, Miller-Crews I, Nilsson EE, Skinner MK, Gore AC, Crews D (2014) Sexually dimorphic effects of ancestral exposure to vinclozolin on stress reactivity in rats. Endocrinology 155(10):3853–3866. doi:10.1210/en.2014-1253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Walker DM, Gore AC (2011) Transgenerational neuroendocrine disruption of reproduction. Nat Rev Endocrinol 7(4):197–207. doi:10.1038/nrendo.2010.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Anderson LM, Riffle L, Wilson R, Travlos GS, Lubomirski MS, Alvord WG (2006) Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition 22(3):327–331. doi:10.1016/j.nut.2005.09.006

    Article  CAS  PubMed  Google Scholar 

  92. Skinner MK (2010) Metabolic disorders: fathers’ nutritional legacy. Nature 467(7318):922–923. doi:10.1038/467922a

    Article  CAS  PubMed  Google Scholar 

  93. Wei Y, Yang CR, Wei YP, Zhao ZA, Hou Y, Schatten H, Sun QY (2014) Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci U S A 111(5):1873–1878. doi:10.1073/pnas.1321195111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10(11):682–688. doi:10.1038/sj.ejhg.5200859

    Article  CAS  PubMed  Google Scholar 

  95. Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjostrom M, Golding J, Team AS (2006) Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14(2):159–166. doi:10.1038/sj.ejhg.5201538

    Article  PubMed  Google Scholar 

  96. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143(7):1084–1096. doi:10.1016/j.cell.2010.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yamaguchi R, Nakagawa Y, Liu YJ, Fujisawa Y, Sai S, Nagata E, Sano S, Satake E et al (2010) Effects of maternal high-fat diet on serum lipid concentration and expression of peroxisomal proliferator-activated receptors in the early life of rat offspring. Horm Metab Res 42(11):821–825. doi:10.1055/s-0030-1261954

    Article  CAS  PubMed  Google Scholar 

  98. Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, Seisenberger S, Hore TA et al (2014) In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345(6198):1255903. doi:10.1126/science.1255903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Hajkova P (2011) Epigenetic reprogramming in the germline: towards the ground state of the epigenome. Philos Trans R Soc Lond B Biol Sci 366(1575):2266–2273. doi:10.1098/rstb.2011.0042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stringer JM, Barrand S, Western P (2013) Fine-tuning evolution: germ-line epigenetics and inheritance. Reproduction 146(1):R37–48. doi:10.1530/REP-12-0526

    Article  CAS  PubMed  Google Scholar 

  101. Weaver JR, Susiarjo M, Bartolomei MS (2009) Imprinting and epigenetic changes in the early embryo. Mamm Genome 20(9-10):532–543. doi:10.1007/s00335-009-9225-2

    Article  PubMed  Google Scholar 

  102. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293(5532):1089–1093. doi:10.1126/science.1063443

    Article  CAS  PubMed  Google Scholar 

  103. Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B et al (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48(6):849–862. doi:10.1016/j.molcel.2012.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA (2010) Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329(5987):78–82. doi:10.1126/science.1187945

    Article  CAS  PubMed  Google Scholar 

  105. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117(1-2):15–23

    Article  CAS  PubMed  Google Scholar 

  106. Ginsburg S, Jablonka E (2009) Epigenetic learning in non-neural organisms. J Biosci 34(4):633–646

    Article  CAS  PubMed  Google Scholar 

  107. Gluckman PD, Hanson MA, Beedle AS (2007) Non-genomic transgenerational inheritance of disease risk. Bioessays 29(2):145–154. doi:10.1002/bies.20522

    Article  CAS  PubMed  Google Scholar 

  108. Jablonka E, Lamb MJ (2005) Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press, Cambridge

    Google Scholar 

Download references

Funding

The work is supported by “Hundred Talents program”, “Qing Lan Project” of Nanjing Normal University, Jiangsu Provincial Natural Science Foundation (#BK20140917), National Natural Science Foundation of China (#81501164, # 81501171), Hong Kong Health and Medical Research Fund, and by funds of Leading Talents of Guangdong (2013), and Programme of Introducing Talents of Discipline to Universities (B14036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ti-Fei Yuan, Ang Li, Gonglin Hou or Kwok Fai So.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Ti-Fei Yuan, Ang Li and Xin Sun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, TF., Li, A., Sun, X. et al. Transgenerational Inheritance of Paternal Neurobehavioral Phenotypes: Stress, Addiction, Ageing and Metabolism. Mol Neurobiol 53, 6367–6376 (2016). https://doi.org/10.1007/s12035-015-9526-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9526-2

Keywords

Navigation