Skip to main content

Advertisement

Log in

CXCR4 Antagonist AMD3100 Suppresses the Long-Term Abnormal Structural Changes of Newborn Neurons in the Intraventricular Kainic Acid Model of Epilepsy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Abnormal hippocampal neurogenesis is a prominent feature of temporal lobe epilepsy (TLE) models, which is thought to contribute to abnormal brain activity. Stromal cell-derived factor-1 (SDF-1) and its specific receptor CXCR4 play important roles in adult neurogenesis. We investigated whether treatment with the CXCR4 antagonist AMD3100 suppressed aberrant hippocampal neurogenesis, as well as the long-term consequences in the intracerebroventricular kainic acid (ICVKA) model of epilepsy. Adult male rats were randomly assigned as control rats, rats subjected to status epilepticus (SE), and post-SE rats treated with AMD3100. Animals in each group were divided into two subgroups (acute stage and chronic stage). We used immunofluorescence staining of BrdU and DCX to analyze the hippocampal neurogenesis on post-SE days 10 or 74. Nissl staining and Timm staining were used to evaluate hippocampal damage and mossy fiber sprouting, respectively. On post-SE day 72, the frequency and mean duration of spontaneous seizures were measured by electroencephalography (EEG). Cognitive function was evaluated by Morris water maze testing on post-SE day 68. The ICVKA model of TLE resulted in aberrant neurogenesis such as altered proliferation, abnormal dendrite development of newborn neurons, as well as spontaneous seizures and spatial learning impairments. More importantly, AMD3100 treatment reversed the aberrant neurogenesis seen after TLE, which was accompanied by decreased long-term seizure activity, though improvement in spatial learning was not seen. AMD3100 could suppress long-term seizure activity and alter adult neurogenesis in the ICVKA model of TLE, which provided morphological evidences that AMD3100 might be beneficial for treating chronic epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Overstreet-Wadiche LS, Bromberg DA, Bensen AL, Westbrook GL (2006) Seizures accelerate functional integration of adult-generated granule cells. J Neurosci 26:4095–4103

    Article  CAS  PubMed  Google Scholar 

  2. Crespel A, Rigau V, Coubes P, Rousset MC, de Bock F, Okano H, Baldy-Moulinier M, Bockaert J, Lerner-Natoli M (2005) Increased number of neural progenitors in human temporal lobe epilepsy. Neurobiol Dis 19:436–450

    Article  CAS  PubMed  Google Scholar 

  3. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738

    CAS  PubMed  Google Scholar 

  4. Scharfman HE, Goodman JH, Sollas AL (2000) Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci 20:6144–6158

    CAS  PubMed  Google Scholar 

  5. Shapiro LA, Ribak CE (2006) Newly born dentate granule neurons after pilocarpine-induced epilepsy have hilar basal dendrites with immature synapses. Epilepsy Res 69:53–66

    Article  PubMed  Google Scholar 

  6. Hester MS, Danzer SC (2013) Accumulation of abnormal adult-generated hippocampal granule cells predicts seizure frequency and severity. J Neurosci 33:8926–8936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Murphy BL, Hofacer RD, Faulkner CN, Loepke AW, Danzer SC (2012) Abnormalities of granule cell dendritic structure are a prominent feature of the intrahippocampal kainic acid model of epilepsy despite reduced postinjury neurogenesis. Epilepsia 53:908–921

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kralic JE, Ledergerber DA, Fritschy JM (2005) Disruption of the neurogenic potential of the dentate gyrus in a mouse model of temporal lobe epilepsy with focal seizures. Eur J Neurosci 22:1916–1927

    Article  PubMed  Google Scholar 

  9. Hattiangady B, Rao MS, Shetty AK (2004) Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol Dis 17:473–490

    Article  CAS  PubMed  Google Scholar 

  10. Tran PB, Banisadr G, Ren D, Chenn A, Miller RJ (2007) Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol 500:1007–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marquez-Curtis LA, Janowska-Wieczorek A (2013) Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. Biomed Res Int 2013:561098

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cheng M, Qin G (2012) Progenitor cell mobilization and recruitment: SDF-1, CXCR4, alpha4-integrin, and c-kit. Prog Mol Biol Transl Sci 111:243–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cui L, Qu H, Xiao T, Zhao M, Jolkkonen J, Zhao C (2013) Stromal cell-derived factor-1 and its receptor CXCR4 in adult neurogenesis after cerebral ischemia. Restor Neurol Neurosci 31:239–251

    CAS  PubMed  Google Scholar 

  14. Jung KH, Chu K, Lee ST, Kim JH, Kang KM, Song EC, Kim SJ, Park HK, Kim M, Lee SK, Roh JK (2009) Region-specific plasticity in the epileptic rat brain: a hippocampal and extrahippocampal analysis. Epilepsia 50:537–549

    Article  CAS  PubMed  Google Scholar 

  15. Li C, Xu B, Wang WW, Yu XJ, Zhu J, Yu HM, Han D, Pei DS, Zhang GY (2010) Coactivation of GABA receptors inhibits the JNK3 apoptotic pathway via disassembly of GluR6-PSD-95-MLK3 signaling module in KA-induced seizure. Epilepsia 51:391–403

    Article  CAS  PubMed  Google Scholar 

  16. Shetty AK, Zaman V, Hattiangady B (2005) Repair of the injured adult hippocampus through graft-mediated modulation of the plasticity of the dentate gyrus in a rat model of temporal lobe epilepsy. J Neurosci 25:8391–8401

    Article  CAS  PubMed  Google Scholar 

  17. Zhu XB, Wang YB, Chen O, Zhang DQ, Zhang ZH, Cao AH, Huang SY, Sun RP (2012) Characterization of the expression of macrophage inflammatory protein-1alpha (MIP-1alpha) and C-C chemokine receptor 5 (CCR5) after kainic acid-induced status epilepticus (SE) in juvenile rats. Neuropathol Appl Neurobiol 38:602–616

    Article  CAS  PubMed  Google Scholar 

  18. Shetty AK, Hattiangady B, Rao MS (2009) Vulnerability of hippocampal GABA-ergic interneurons to kainate-induced excitotoxic injury during old age. J Cell Mol Med 13:2408–2423

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cook AM, Mieure KD, Owen RD, Pesaturo AB, Hatton J (2009) Intracerebroventricular administration of drugs. Pharmacotherapy 29:832–845

    Article  CAS  PubMed  Google Scholar 

  20. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  PubMed  Google Scholar 

  21. Sugaya Y, Maru E, Kudo K, Shibasaki T, Kato N (2010) Levetiracetam suppresses development of spontaneous EEG seizures and aberrant neurogenesis following kainate-induced status epilepticus. Brain Res 1352:187–199

    Article  CAS  PubMed  Google Scholar 

  22. Kong S, Cheng Z, Liu J, Wang Y (2014) Downregulated GABA and BDNF-TrkB pathway in chronic cyclothiazide seizure model. Neural Plast 2014:310146

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen RX, Song HY, Dong YY, Hu C, Zheng QD, Xue TC, Liu XH, Zhang Y, Chen J, Ren ZG, Liu YK, Cui JF (2014) Dynamic expression patterns of differential proteins during early invasion of hepatocellular carcinoma. PLoS One 9:e88543

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sunnen CN, Brewster AL, Lugo JN, Vanegas F, Turcios E, Mukhi S, Parghi D, D'Arcangelo G, Anderson AE (2011) Inhibition of the mammalian target of rapamycin blocks epilepsy progression in NS-Pten conditional knockout mice. Epilepsia 52:2065–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holmes GL, Sarkisian M, Ben-Ari Y, Chevassus-Au-Louis N (1999) Mossy fiber sprouting after recurrent seizures during early development in rats. J Comp Neurol 404:537–553

    Article  CAS  PubMed  Google Scholar 

  26. Jessberger S, Zhao C, Toni N, Clemenson GD Jr, Li Y, Gage FH (2007) Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J Neurosci 27:9400–9407

    Article  CAS  PubMed  Google Scholar 

  27. Zhao C, Wang J, Zhao S, Nie Y (2009) Constraint-induced movement therapy enhanced neurogenesis and behavioral recovery after stroke in adult rats. Tohoku J Exp Med 218:301–308

    Article  PubMed  Google Scholar 

  28. Inostroza M, Cid E, Brotons-Mas J, Gal B, Aivar P, Uzcategui YG, Sandi C, Menendez de la Prida L (2011) Hippocampal-dependent spatial memory in the water maze is preserved in an experimental model of temporal lobe epilepsy in rats. PLoS One 6:e22372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jessberger S, Romer B, Babu H, Kempermann G (2005) Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol 196:342–351

    Article  CAS  PubMed  Google Scholar 

  30. Parent JM, Tada E, Fike JR, Lowenstein DH (1999) Inhibition of dentate granule cell neurogenesis with brain irradiation does not prevent seizure-induced mossy fiber synaptic reorganization in the rat. J Neurosci 19:4508–4519

    CAS  PubMed  Google Scholar 

  31. Huttmann K, Sadgrove M, Wallraff A, Hinterkeuser S, Kirchhoff F, Steinhauser C, Gray WP (2003) Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus: functional and immunocytochemical analysis. Eur J Neurosci 18:2769–2778

    Article  PubMed  Google Scholar 

  32. Blumcke I, Schewe JC, Normann S, Brustle O, Schramm J, Elger CE, Wiestler OD (2001) Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus 11:311–321

    Article  CAS  PubMed  Google Scholar 

  33. Shetty AK, Rao MS, Hattiangady B, Zaman V, Shetty GA (2004) Hippocampal neurotrophin levels after injury: relationship to the age of the hippocampus at the time of injury. J Neurosci Res 78:520–532

    Article  CAS  PubMed  Google Scholar 

  34. Ge S, Pradhan DA, Ming GL, Song H (2007) GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci 30:1–8

    Article  PubMed  Google Scholar 

  35. Lowenstein DH, Seren MS, Longo FM (1993) Prolonged increases in neurotrophic activity associated with kainate-induced hippocampal synaptic reorganization. Neuroscience 56:597–604

    Article  CAS  PubMed  Google Scholar 

  36. Dashtipour K, Wong AM, Obenaus A, Spigelman I, Ribak CE (2003) Temporal profile of hilar basal dendrite formation on dentate granule cells after status epilepticus. Epilepsy Res 54:141–151

    Article  PubMed  Google Scholar 

  37. Kron MM, Zhang H, Parent JM (2010) The developmental stage of dentate granule cells dictates their contribution to seizure-induced plasticity. J Neurosci 30:2051–9

    Article  CAS  PubMed  Google Scholar 

  38. Murphy BL, Pun RY, Yin H, Faulkner CR, Loepke AW, Danzer SC (2011) Heterogeneous integration of adult-generated granule cells into the epileptic brain. J Neurosci 31:105–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Walter C, Murphy BL, Pun RY, Spieles-Engemann AL, Danzer SC (2007) Pilocarpine-induced seizures cause selective time-dependent changes to adult-generated hippocampal dentate granule cells. J Neurosci 27:7541–7552

    Article  CAS  PubMed  Google Scholar 

  40. Ribak CE, Tran PH, Spigelman I, Okazaki MM, Nadler JV (2000) Status epilepticus-induced hilar basal dendrites on rodent granule cells contribute to recurrent excitatory circuitry. J Comp Neurol 428:240–253

    Article  CAS  PubMed  Google Scholar 

  41. Austin JE, Buckmaster PS (2004) Recurrent excitation of granule cells with basal dendrites and low interneuron density and inhibitory postsynaptic current frequency in the dentate gyrus of macaque monkeys. J Comp Neurol 476:205–218

    Article  PubMed  Google Scholar 

  42. Hung YW, Yang DI, Huang PY, Lee TS, Kuo TB, Yiu CH, Shih YH, Lin YY (2012) The duration of sustained convulsive seizures determines the pattern of hippocampal neurogenesis and the development of spontaneous epilepsy in rats. Epilepsy Res 98:206–215

    Article  PubMed  Google Scholar 

  43. Ledergerber D, Fritschy JM, Kralic JE (2006) Impairment of dentate gyrus neuronal progenitor cell differentiation in a mouse model of temporal lobe epilepsy. Exp Neurol 199:130–142

    Article  PubMed  Google Scholar 

  44. Hattiangady B, Shetty AK (2010) Decreased neuronal differentiation of newly generated cells underlies reduced hippocampal neurogenesis in chronic temporal lobe epilepsy. Hippocampus 20:97–112

    PubMed  PubMed Central  Google Scholar 

  45. Shetty AK, Zaman V, Shetty GA (2003) Hippocampal neurotrophin levels in a kainate model of temporal lobe epilepsy: a lack of correlation between brain-derived neurotrophic factor content and progression of aberrant dentate mossy fiber sprouting. J Neurochem 87:147–159

    Article  CAS  PubMed  Google Scholar 

  46. Scharfman HE, Sollas AL, Berger RE, Goodman JH (2003) Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol 90:2536–2547

    Article  PubMed  Google Scholar 

  47. Buckmaster PS (2014) Does mossy fiber sprouting give rise to the epileptic state? Adv Exp Med Biol 813:161–168

    Article  PubMed  Google Scholar 

  48. Feng L, Molnar P, Nadler JV (2003) Short-term frequency-dependent plasticity at recurrent mossy fiber synapses of the epileptic brain. J Neurosci 23:5381–5390

    CAS  PubMed  Google Scholar 

  49. Sloviter RS, Zappone CA, Harvey BD, Frotscher M (2006) Kainic acid-induced recurrent mossy fiber innervation of dentate gyrus inhibitory interneurons: possible anatomical substrate of granule cell hyper-inhibition in chronically epileptic rats. J Comp Neurol 494:944–960

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tauck DL, Nadler JV (1985) Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci 5:1016–1022

    CAS  PubMed  Google Scholar 

  51. Shetty AK, Turner DA (2000) Fetal hippocampal grafts containing CA3 cells restore host hippocampal glutamate decarboxylase-positive interneuron numbers in a rat model of temporal lobe epilepsy. J Neurosci 20:8788–8801

    CAS  PubMed  Google Scholar 

  52. Shetty AK, Turner DA (1999) Vulnerability of the dentate gyrus to aging and intracerebroventricular administration of kainic acid. Exp Neurol 158:491–503

    Article  CAS  PubMed  Google Scholar 

  53. Ben-Ari Y, Cossart R (2000) Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 23:580–587

    Article  CAS  PubMed  Google Scholar 

  54. Tzeng TT, Tsay HJ, Chang L, Hsu CL, Lai TH, Huang FL, Shiao YJ (2013) Caspase 3 involves in neuroplasticity, microglial activation and neurogenesis in the mice hippocampus after intracerebral injection of kainic acid. J Biomed Sci 20:90

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bhattacharyya BJ, Banisadr G, Jung H, Ren D, Cronshaw DG, Zou Y, Miller RJ (2008) The chemokine stromal cell-derived factor-1 regulates GABAergic inputs to neural progenitors in the postnatal dentate gyrus. J Neurosci 28:6720–6730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ardelt AA, Bhattacharyya BJ, Belmadani A, Ren D, Miller RJ (2013) Stromal derived growth factor-1 (CXCL12) modulates synaptic transmission to immature neurons during post-ischemic cerebral repair. Exp Neurol 248C:246–253

    Article  Google Scholar 

  57. Bonde S, Ekdahl CT, Lindvall O (2006) Long-term neuronal replacement in adult rat hippocampus after status epilepticus despite chronic inflammation. Eur J Neurosci 23:965–974

    Article  PubMed  Google Scholar 

  58. Shapiro LA, Korn MJ, Shan Z, Ribak CE (2005) GFAP-expressing radial glia-like cell bodies are involved in a one-to-one relationship with doublecortin-immunolabeled newborn neurons in the adult dentate gyrus. Brain Res 1040:81–91

    Article  CAS  PubMed  Google Scholar 

  59. Arisi GM, Ruch M, Foresti ML, Mukherjee S, Ribak CE, Shapiro LA (2011) Astrocyte alterations in the hippocampus following pilocarpine-induced seizures in aged rats. Aging Dis 2:294–300

    PubMed  PubMed Central  Google Scholar 

  60. Shapiro LA, Korn MJ, Ribak CE (2005) Newly generated dentate granule cells from epileptic rats exhibit elongated hilar basal dendrites that align along GFAP-immunolabeled processes. Neuroscience 136:823–831

    Article  CAS  PubMed  Google Scholar 

  61. Shapiro LA, Ribak CE (2005) Integration of newly born dentate granule cells into adult brains: hypotheses based on normal and epileptic rodents. Brain Res Brain Res Rev 48:43–56

    Article  PubMed  Google Scholar 

  62. Frotscher M, Haas CA, Forster E (2003) Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. Cereb Cortex 13:634–640

    Article  PubMed  Google Scholar 

  63. Hartfuss E, Forster E, Bock HH, Hack MA, Leprince P, Luque JM, Herz J, Frotscher M, Gotz M (2003) Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 130:4597–4609

    Article  CAS  PubMed  Google Scholar 

  64. Pauli E, Hildebrandt M, Romstock J, Stefan H, Blumcke I (2006) Deficient memory acquisition in temporal lobe epilepsy is predicted by hippocampal granule cell loss. Neurology 67:1383–1389

    Article  CAS  PubMed  Google Scholar 

  65. Siebzehnrubl FA, Blumcke I (2008) Neurogenesis in the human hippocampus and its relevance to temporal lobe epilepsies. Epilepsia 49(Suppl 5):55–65

    Article  PubMed  Google Scholar 

  66. Hattiangady B, Shetty AK (2008) Implications of decreased hippocampal neurogenesis in chronic temporal lobe epilepsy. Epilepsia 49(Suppl 5):26–41

    Article  PubMed  PubMed Central  Google Scholar 

  67. Alessio A, Damasceno BP, Camargo CH, Kobayashi E, Guerreiro CA, Cendes F (2004) Differences in memory performance and other clinical characteristics in patients with mesial temporal lobe epilepsy with and without hippocampal atrophy. Epilepsy Behav 5:22–27

    Article  CAS  PubMed  Google Scholar 

  68. Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E (2002) Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12:578–584

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jessberger S, Kempermann G (2003) Adult-born hippocampal neurons mature into activity-dependent responsiveness. Eur J Neurosci 18:2707–2712

    Article  PubMed  Google Scholar 

  70. Aimone JB, Wiles J, Gage FH (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 9:723–727

    Article  CAS  PubMed  Google Scholar 

  71. Kempermann G, Wiskott L, Gage FH (2004) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14:186–191

    Article  CAS  PubMed  Google Scholar 

  72. Jakubs K, Nanobashvili A, Bonde S, Ekdahl CT, Kokaia Z, Kokaia M, Lindvall O (2006) Environment matters: synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability. Neuron 52:1047–1059

    Article  CAS  PubMed  Google Scholar 

  73. Fournier NM, Botterill JJ, Marks WN, Guskjolen AJ, Kalynchuk LE (2013) Impaired recruitment of seizure-generated neurons into functional memory networks of the adult dentate gyrus following long-term amygdala kindling. Exp Neurol 244:96–104

    Article  PubMed  Google Scholar 

  74. Scharfman HE, McCloskey DP (2009) Postnatal neurogenesis as a therapeutic target in temporal lobe epilepsy. Epilepsy Res 85:150–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kuruba R, Hattiangady B, Shetty AK (2009) Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy. Epilepsy Behav 14(Suppl 1):65–73

    Article  PubMed  Google Scholar 

  76. Pekcec A, Fuest C, Muhlenhoff M, Gerardy-Schahn R, Potschka H (2008) Targeting epileptogenesis-associated induction of neurogenesis by enzymatic depolysialylation of NCAM counteracts spatial learning dysfunction but fails to impact epilepsy development. J Neurochem 105:389–400

    Article  CAS  PubMed  Google Scholar 

  77. Jessberger S, Nakashima K, Clemenson GD Jr, Mejia E, Mathews E, Ure K, Ogawa S, Sinton CM, Gage FH, Hsieh J (2007) Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J Neurosci 27:5967–5975

    Article  CAS  PubMed  Google Scholar 

  78. Squire LR (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 82:171–177

    Article  PubMed  Google Scholar 

  79. Anagnostaras SG, Gale GD, Fanselow MS (2001) Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus 11:8–17

    Article  CAS  PubMed  Google Scholar 

  80. Rozeske RR, Valerio S, Chaudun F, Herry C (2014) Prefrontal neuronal circuits of contextual fear conditioning. Genes Brain Behav

  81. Broadbent NJ, Squire LR, Clark RE (2004) Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci U S A 101:14515–14520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Broadbent NJ, Gaskin S, Squire LR, Clark RE (2009) Object recognition memory and the rodent hippocampus. Learn Mem 17:5–11

    Article  PubMed  Google Scholar 

  83. Warburton EC, Brown MW (2014) Neural circuitry for rat recognition memory. Behav Brain Res

  84. Cohen SJ, Stackman Jr RW (2014) Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behav Brain Res

  85. Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B, Arenzana-Seisdedos F, Thelen M, Bachelerie F (2005) The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 280:35760–35766

    Article  CAS  PubMed  Google Scholar 

  86. Puchert M, Engele J (2014) The peculiarities of the SDF-1/CXCL12 system: in some cells, CXCR4 and CXCR7 sing solos, in others, they sing duets. Cell Tissue Res 355:239–253

    Article  CAS  PubMed  Google Scholar 

  87. Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B (2009) CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 113:6085–6093

    Article  CAS  PubMed  Google Scholar 

  88. Sanchez-Martin L, Sanchez-Mateos P, Cabanas C (2013) CXCR7 impact on CXCL12 biology and disease. Trends Mol Med 19:12–22

    Article  CAS  PubMed  Google Scholar 

  89. Kalatskaya I, Berchiche YA, Gravel S, Limberg BJ, Rosenbaum JS, Heveker N (2009) AMD3100 is a CXCR7 ligand with allosteric agonist properties. Mol Pharmacol 75:1240–1247

    Article  CAS  PubMed  Google Scholar 

  90. Merino JJ, Oset-Gasque MJ (2013) The CXCR7 activation by SDF1 induces neural progenitor migration (NPC): a dual effect on CXCR4/CXCR7 axis within the vascular niche of ischemic rats. Int J Stroke 8:E56

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of Liaoning Province, China (No. 201202276); the Program for Liaoning Excellent Talents in University (No. LR2013039); and the Natural Science Foundation of China for Pro. Gang Zhu (81271442).

Conflict of Interest

All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuansheng Zhao.

Additional information

Chengguang Song and Wangshu Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Xu, W., Zhang, X. et al. CXCR4 Antagonist AMD3100 Suppresses the Long-Term Abnormal Structural Changes of Newborn Neurons in the Intraventricular Kainic Acid Model of Epilepsy. Mol Neurobiol 53, 1518–1532 (2016). https://doi.org/10.1007/s12035-015-9102-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9102-9

Keywords

Navigation