Skip to main content

Advertisement

Log in

Genetic Approaches to Investigate the Role of CREB in Neuronal Plasticity and Memory

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In neurons, the convergence of multiple intracellular signaling cascades leading to cAMP-responsive element-binding protein (CREB) activation suggests that this transcription factor plays a critical role in integrating different inputs and mediating appropriate neuronal responses. The nature of this transcriptional response depends on both the type and strength of the stimulus and the cellular context. CREB-dependent gene expression has been involved in many different aspects of nervous system function, from embryonic development to neuronal survival, and synaptic, structural, and intrinsic plasticity. Here, we first review the different methodological approaches used to genetically manipulate CREB activity and levels in neurons in vivo in the adult brain, including recombinant viral vectors, mouse transgenesis, and gene-targeting techniques. We then discuss the impact of these approaches on our understanding of CREB’s roles in neuronal plasticity and memory in rodents. Studies combining these genetic approaches with electrophysiology and behavior provide strong evidence that CREB is critically involved in the regulation of synaptic plasticity, intrinsic excitability, and long-term memory formation. These findings pave the way for the development of novel therapeutic strategies to treat memory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    PubMed  CAS  Google Scholar 

  2. Johannessen M, Delghandi MP, Moens U (2004) What turns CREB on? Cell Signal 16:1211–1227

    PubMed  CAS  Google Scholar 

  3. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414

    PubMed  CAS  Google Scholar 

  4. Montminy M (1997) Transcriptional regulation by cyclic AMP. Annu Rev Biochem 66:807–822

    PubMed  CAS  Google Scholar 

  5. Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21:127–148

    PubMed  CAS  Google Scholar 

  6. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609

    PubMed  CAS  Google Scholar 

  7. Josselyn SA, Nguyen PV (2005) CREB, synapses and memory disorders: past progress and future challenges. Curr Drug Targets CNS Neurol Disord 4:481–497

    PubMed  CAS  Google Scholar 

  8. Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    PubMed  CAS  Google Scholar 

  9. Barco A, Jancic D, Kandel ER (2007) CREB-dependent transcription and synaptic plasticity. In: Dudek S (ed) Regulation of transcription by neuronal activity: to the nucleus and back. Springer, New York, pp 127–154

    Google Scholar 

  10. Cole CJ, Josselyn SA (2008) Transcription regulation of memory: CREB, CaMKIV, Fos/Jun, CBP, and SRF. In: Sweatt JD, Byrne JH (eds) Learning and memory: a comprehensive reference. Elsevier, Oxford, pp 547–566

    Google Scholar 

  11. Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci 33:230–240

    PubMed  CAS  Google Scholar 

  12. Sakamoto K, Karelina K, Obrietan K (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 116:1–9

    PubMed  CAS  Google Scholar 

  13. Conkright MD, Canettieri G, Screaton R, Guzman E, Miraglia L et al (2003) TORCs: transducers of regulated CREB activity. Mol Cell 12:413–423

    PubMed  CAS  Google Scholar 

  14. Iourgenko V, Zhang W, Mickanin C, Daly I, Jiang C et al (2003) Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc Natl Acad Sci U S A 100:12147–12152

    PubMed  CAS  Google Scholar 

  15. Du K, Asahara H, Jhala US, Wagner BL, Montminy M (2000) Characterization of a CREB gain-of-function mutant with constitutive transcriptional activity in vivo. Mol Cell Biol 20:4320–4327

    PubMed  CAS  Google Scholar 

  16. Cardinaux JR, Notis JC, Zhang Q, Vo N, Craig JC et al (2000) Recruitment of CREB binding protein is sufficient for CREB-mediated gene activation. Mol Cell Biol 20:1546–1552

    PubMed  CAS  Google Scholar 

  17. Zanger K, Radovick S, Wondisford FE (2001) CREB binding protein recruitment to the transcription complex requires growth factor-dependent phosphorylation of its GF box. Mol Cell 7:551–558

    PubMed  CAS  Google Scholar 

  18. Impey S, Fong AL, Wang Y, Cardinaux JR, Fass DM et al (2002) Phosphorylation of CBP mediates transcriptional activation by neural activity and CaM kinase IV. Neuron 34:235–244

    PubMed  CAS  Google Scholar 

  19. Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD (1999) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286:2358–2361

    PubMed  CAS  Google Scholar 

  20. Loriaux MM, Rehfuss RP, Brennan RG, Goodman RH (1993) Engineered leucine zippers show that hemiphosphorylated CREB complexes are transcriptionally active. Proc Natl Acad Sci U S A 90:9046–9050

    PubMed  CAS  Google Scholar 

  21. Walton KM, Rehfuss RP, Chrivia JC, Lochner JE, Goodman RH (1992) A dominant repressor of cyclic adenosine 3′,5′-monophosphate (cAMP)-regulated enhancer-binding protein activity inhibits the cAMP-mediated induction of the somatostatin promoter in vivo. Mol Endocrinol 6:647–655

    PubMed  CAS  Google Scholar 

  22. Ahn S, Olive M, Aggarwal S, Krylov D, Ginty DD et al (1998) A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol Cell Biol 18:967–977

    PubMed  CAS  Google Scholar 

  23. Olive M, Krylov D, Echlin DR, Gardner K, Taparowsky E et al (1997) A dominant negative to activation protein-1 (AP1) that abolishes DNA binding and inhibits oncogenesis. J Biol Chem 272:18586–18594

    PubMed  CAS  Google Scholar 

  24. Hummler E, Cole TJ, Blendy JA, Ganss R, Aguzzi A et al (1994) Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc Natl Acad Sci U S A 91:5647–5651

    PubMed  CAS  Google Scholar 

  25. Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G et al (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68

    PubMed  CAS  Google Scholar 

  26. Blendy JA, Kaestner KH, Schmid W, Gass P, Schutz G (1996) Targeting of the CREB gene leads to up-regulation of a novel CREB mRNA isoform. EMBO J 15:1098–1106

    PubMed  CAS  Google Scholar 

  27. Rudolph D, Tafuri A, Gass P, Hammerling GJ, Arnold B et al (1998) Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc Natl Acad Sci U S A 95:4481–4486

    PubMed  CAS  Google Scholar 

  28. Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H, Kretz O et al (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat Genet 31:47–54

    PubMed  CAS  Google Scholar 

  29. Parlato R, Cruz H, Otto C, Murtra P, Parkitna JR et al (2010) Effects of the cell type-specific ablation of the cAMP-responsive transcription factor in noradrenergic neurons on locus coeruleus firing and withdrawal behavior after chronic exposure to morphine. J Neurochem 115:563–573

    PubMed  CAS  Google Scholar 

  30. Parlato R, Rieker C, Turiault M, Tronche F, Schutz G (2006) Survival of DA neurons is independent of CREM upregulation in absence of CREB. Genesis 44:454–464

    PubMed  CAS  Google Scholar 

  31. Parlato R, Otto C, Begus Y, Stotz S, Schutz G (2007) Specific ablation of the transcription factor CREB in sympathetic neurons surprisingly protects against developmentally regulated apoptosis. Development 134:1663–1670

    PubMed  CAS  Google Scholar 

  32. Casanova E, Fehsenfeld S, Mantamadiotis T, Lemberger T, Greiner E et al (2001) A CamKIIalpha iCre BAC allows brain-specific gene inactivation. Genesis 31:37–42

    PubMed  CAS  Google Scholar 

  33. Cao JL, Vialou VF, Lobo MK, Robison AJ, Neve RL et al (2010) Essential role of the cAMP-cAMP response-element binding protein pathway in opiate-induced homeostatic adaptations of locus coeruleus neurons. Proc Natl Acad Sci U S A 107:17011–17016

    PubMed  CAS  Google Scholar 

  34. Gau D, Lemberger T, von Gall C, Kretz O, Le Minh N et al (2002) Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34:245–253

    PubMed  CAS  Google Scholar 

  35. Wingate AD, Martin KJ, Hunter C, Carr JM, Clacher C et al (2009) Generation of a conditional CREB Ser133Ala knockin mouse. Genesis 47:688–696

    PubMed  CAS  Google Scholar 

  36. Niederberger E, Ehnert C, Gao W, Coste O, Schmidtko A et al (2007) The impact of CREB and its phosphorylation at Ser142 on inflammatory nociception. Biochem Biophys Res Commun 362:75–80

    PubMed  CAS  Google Scholar 

  37. Brodie CR, Khaliq M, Yin JC, Brent Clark H, Orr HT et al (2004) Overexpression of CREB reduces CRE-mediated transcription: behavioral and cellular analyses in transgenic mice. Mol Cell Neurosci 25:602–611

    PubMed  CAS  Google Scholar 

  38. Rammes G, Steckler T, Kresse A, Schutz G, Zieglgansberger W et al (2000) Synaptic plasticity in the basolateral amygdala in transgenic mice expressing dominant-negative cAMP response element-binding protein (CREB) in forebrain. Eur J Neurosci 12:2534–2546

    PubMed  CAS  Google Scholar 

  39. Suzuki A, Fukushima H, Mukawa T, Toyoda H, Wu LJ et al (2011) Upregulation of CREB-mediated transcription enhances both short- and long-term memory. J Neurosci 31:8786–8802

    PubMed  CAS  Google Scholar 

  40. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    PubMed  CAS  Google Scholar 

  41. Gossen M, Freundlieb S, Bender G, Muller G, Hillen W et al (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    PubMed  CAS  Google Scholar 

  42. Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD et al (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274:1678–1683

    PubMed  CAS  Google Scholar 

  43. Newton SS, Thome J, Wallace TL, Shirayama Y, Schlesinger L et al (2002) Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J Neurosci 22:10883–10890

    PubMed  CAS  Google Scholar 

  44. Barco A, Alarcon JM, Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108:689–703

    PubMed  CAS  Google Scholar 

  45. Lopez de Armentia M, Jancic D, Olivares R, Alarcon JM, Kandel ER et al (2007) cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons. J Neurosci 27:13909–13918

    PubMed  CAS  Google Scholar 

  46. Choi YS, Lee B, Cho HY, Reyes IB, Pu XA et al (2009) CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington’s disease. Neurobiol Dis 36:256–268

    Google Scholar 

  47. Pittenger C, Huang YY, Paletzki RF, Bourtchouladze R, Scanlin H et al (2002) Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 34:447–462

    PubMed  CAS  Google Scholar 

  48. Jancic D, Lopez de Armentia M, Valor LM, Olivares R, Barco A (2009) Inhibition of cAMP response element-binding protein reduces neuronal excitability and plasticity, and triggers neurodegeneration. Cereb Cortex 19:2535–2547

    PubMed  Google Scholar 

  49. Lee B, Dziema H, Lee KH, Choi YS, Obrietan K (2007) CRE-mediated transcription and COX-2 expression in the pilocarpine model of status epilepticus. Neurobiol Dis 25:80–91

    PubMed  CAS  Google Scholar 

  50. Kida S, Josselyn SA, de Ortiz SP, Kogan JH, Chevere I et al (2002) CREB required for the stability of new and reactivated fear memories. Nat Neurosci 5:348–355

    PubMed  CAS  Google Scholar 

  51. Mamiya N, Fukushima H, Suzuki A, Matsuyama Z, Homma S et al (2009) Brain region-specific gene expression activation required for reconsolidation and extinction of contextual fear memory. J Neurosci 29:402–413

    PubMed  CAS  Google Scholar 

  52. Papale A, Cerovic M, Brambilla R (2009) Viral vector approaches to modify gene expression in the brain. J Neurosci Methods 185:1–14

    PubMed  CAS  Google Scholar 

  53. Neve RL, Neve KA, Nestler EJ, Carlezon WA Jr (2005) Use of herpes virus amplicon vectors to study brain disorders. Biotechniques 39:381–391

    PubMed  CAS  Google Scholar 

  54. Olson VG, Zabetian CP, Bolanos CA, Edwards S, Barrot M et al (2005) Regulation of drug reward by cAMP response element-binding protein: evidence for two functionally distinct subregions of the ventral tegmental area. J Neurosci 25:5553–5562

    PubMed  CAS  Google Scholar 

  55. Han MH, Bolanos CA, Green TA, Olson VG, Neve RL et al (2006) Role of cAMP response element-binding protein in the rat locus ceruleus: regulation of neuronal activity and opiate withdrawal behaviors. J Neurosci 26:4624–4629

    PubMed  CAS  Google Scholar 

  56. Suzuki S, Zhou H, Neumaier JF, Pham TA (2007) Opposing functions of CREB and MKK1 synergistically regulate the geometry of dendritic spines in visual cortex. J Comp Neurol 503:605–617

    PubMed  CAS  Google Scholar 

  57. Han JH, Kushner SA, Yiu AP, Hsiang HL, Buch T et al (2009) Selective erasure of a fear memory. Science 323:1492–1496

    PubMed  CAS  Google Scholar 

  58. Zhou Y, Won J, Karlsson MG, Zhou M, Rogerson T et al (2009) CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat Neurosci 12:1438–1443

    PubMed  CAS  Google Scholar 

  59. Lundstrom K (2005) Biology and application of alphaviruses in gene therapy. Gene Ther 12(Suppl 1):S92–S97

    PubMed  CAS  Google Scholar 

  60. Lundstrom K, Rotmann D, Hermann D, Schneider EM, Ehrengruber MU (2001) Novel mutant Semliki Forest virus vectors: gene expression and localization studies in neuronal cells. Histochem Cell Biol 115:83–91

    PubMed  CAS  Google Scholar 

  61. Kim J, Dittgen T, Nimmerjahn A, Waters J, Pawlak V et al (2004) Sindbis vector SINrep(nsP2S726): a tool for rapid heterologous expression with attenuated cytotoxicity in neurons. J Neurosci Methods 133:81–90

    PubMed  CAS  Google Scholar 

  62. Zhu DY, Lau L, Liu SH, Wei JS, Lu YM (2004) Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A 101:9453–9457

    PubMed  CAS  Google Scholar 

  63. Marie H, Morishita W, Yu X, Calakos N, Malenka RC (2005) Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 45:741–752

    PubMed  CAS  Google Scholar 

  64. Dong Y, Green T, Saal D, Marie H, Neve R et al (2006) CREB modulates excitability of nucleus accumbens neurons. Nat Neurosci 9:475–477

    PubMed  CAS  Google Scholar 

  65. Huang YH, Lin Y, Brown TE, Han MH, Saal DB et al (2008) CREB modulates the functional output of nucleus accumbens neurons: a critical role of N-methyl-D-aspartate glutamate receptor (NMDAR) receptors. J Biol Chem 283:2751–2760

    PubMed  CAS  Google Scholar 

  66. Restivo L, Tafi E, Ammassari-Teule M, Marie H (2009) Viral-mediated expression of a constitutively active form of CREB in hippocampal neurons increases memory. Hippocampus 19:228–234

    PubMed  CAS  Google Scholar 

  67. Vetere G, Marchetti C, Benevento M, Tafi E, Marie H et al (2011) Viral-mediated expression of a constitutively active form of CREB in the dentate gyrus does not induce abnormally enduring fear memory. Behav Brain Res 222:394–396

    PubMed  CAS  Google Scholar 

  68. Marchetti C, Tafi E, Marie H (2011) Viral-mediated expression of a constitutively active form of cAMP response element binding protein in the dentate gyrus increases long term synaptic plasticity. Neuroscience 190:21–26

    PubMed  CAS  Google Scholar 

  69. Khare R, Chen CY, Weaver EA, Barry MA (2011) Advances and future challenges in adenoviral vector pharmacology and targeting. Curr Gene Ther 11(4):241–258

    PubMed  CAS  Google Scholar 

  70. Glover CP, Heywood DJ, Bienemann AS, Deuschle U, Kew JN et al (2004) Adenoviral expression of CREB protects neurons from apoptotic and excitotoxic stress. Neuroreport 15:1171–1175

    PubMed  CAS  Google Scholar 

  71. Warburton EC, Glover CP, Massey PV, Wan H, Johnson B et al (2005) cAMP responsive element-binding protein phosphorylation is necessary for perirhinal long-term potentiation and recognition memory. J Neurosci 25:6296–6303

    PubMed  CAS  Google Scholar 

  72. Gao Y, Deng K, Hou J, Bryson JB, Barco A et al (2004) Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 44:609–621

    PubMed  CAS  Google Scholar 

  73. Xu R, Janson CG, Mastakov M, Lawlor P, Young D et al (2001) Quantitative comparison of expression with adeno-associated virus (AAV-2) brain-specific gene cassettes. Gene Ther 8:1323–1332

    PubMed  CAS  Google Scholar 

  74. Terzi D, Zachariou V (2008) Adeno-associated virus-mediated gene delivery approaches for the treatment of CNS disorders. Biotechnol J 3:1555–1563

    PubMed  CAS  Google Scholar 

  75. Mouravlev A, Dunning J, Young D, During MJ (2006) Somatic gene transfer of cAMP response element-binding protein attenuates memory impairment in aging rats. Proc Natl Acad Sci U S A 103:4705–4710

    PubMed  CAS  Google Scholar 

  76. Barquinero J, Eixarch H, Perez-Melgosa M (2004) Retroviral vectors: new applications for an old tool. Gene Ther 11(Suppl 1):S3–S9

    PubMed  CAS  Google Scholar 

  77. Tashiro A, Zhao C, Gage FH (2006) Retrovirus-mediated single-cell gene knockout technique in adult newborn neurons in vivo. Nat Protoc 1:3049–3055

    PubMed  CAS  Google Scholar 

  78. Jagasia R, Steib K, Englberger E, Herold S, Faus-Kessler T et al (2009) GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci 29:7966–7977

    PubMed  CAS  Google Scholar 

  79. Matrai J, Chuah MK, VandenDriessche T (2010) Recent advances in lentiviral vector development and applications. Mol Ther 18:477–490

    PubMed  CAS  Google Scholar 

  80. Espana J, Valero J, Minano-Molina AJ, Masgrau R, Martin E et al (2010) beta-Amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1. J Neurosci 30:9402–9410

    PubMed  CAS  Google Scholar 

  81. Caccamo A, Maldonado MA, Bokov AF, Majumder S, Oddo S (2010) CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 107:22687–22692

    PubMed  CAS  Google Scholar 

  82. Brunelli M, Castellucci V, Kandel ER (1976) Synaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP. Science 194:1178–1181

    PubMed  CAS  Google Scholar 

  83. Barco A, Bailey CH, Kandel ER (2006) Common molecular mechanisms in explicit and implicit memory. J Neurochem 97:1520–1533

    PubMed  CAS  Google Scholar 

  84. Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    PubMed  CAS  Google Scholar 

  85. Bito H, Deisseroth K, Tsien RW (1996) CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87:1203–1214

    PubMed  CAS  Google Scholar 

  86. Lu YF, Kandel ER, Hawkins RD (1999) Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J Neurosci 19:10250–10261

    PubMed  CAS  Google Scholar 

  87. Deisseroth K, Bito H, Tsien RW (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16:89–101

    PubMed  CAS  Google Scholar 

  88. Impey S, Mark M, Villacres EC, Poser S, Chavkin C et al (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16:973–982

    PubMed  CAS  Google Scholar 

  89. Balschun D, Wolfer DP, Gass P, Mantamadiotis T, Welzl H et al (2003) Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J Neurosci 23:6304–6314

    PubMed  CAS  Google Scholar 

  90. Gass P, Wolfer DP, Balschun D, Rudolph D, Frey U et al (1998) Deficits in memory tasks of mice with CREB mutations depend on gene dosage. Learn Mem 5:274–288

    PubMed  CAS  Google Scholar 

  91. Huang YY, Pittenger C, Kandel ER (2004) A form of long-lasting, learning-related synaptic plasticity in the hippocampus induced by heterosynaptic low-frequency pairing. Proc Natl Acad Sci U S A 101:859–864

    PubMed  CAS  Google Scholar 

  92. Alarcon JM, Barco A, Kandel ER (2006) Capture of the late phase of long-term potentiation within and across the apical and basilar dendritic compartments of CA1 pyramidal neurons: synaptic tagging is compartment restricted. J Neurosci 26:256–264

    PubMed  CAS  Google Scholar 

  93. Barco A, Patterson S, Alarcon JM, Gromova P, Mata-Roig M et al (2005) Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture. Neuron 48:123–137

    PubMed  CAS  Google Scholar 

  94. Casadio A, Martin KC, Giustetto M, Zhu H, Chen M et al (1999) A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99:221–237

    PubMed  CAS  Google Scholar 

  95. Blendy JA, Schmid W, Kiessling M, Schutz G, Gass P (1995) Effects of kainic acid induced seizures on immediate early gene expression in mice with a targeted mutation of the CREB gene. Brain Res 681:8–14

    PubMed  CAS  Google Scholar 

  96. Lemberger T, Parkitna JR, Chai M, Schutz G, Engblom D (2008) CREB has a context-dependent role in activity-regulated transcription and maintains neuronal cholesterol homeostasis. FASEB J 22:2872–2879

    PubMed  CAS  Google Scholar 

  97. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    PubMed  CAS  Google Scholar 

  98. Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J (2010) Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 33:121–129

    PubMed  CAS  Google Scholar 

  99. Murphy DD, Segal M (1997) Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proc Natl Acad Sci U S A 94:1482–1487

    PubMed  CAS  Google Scholar 

  100. Merz K, Herold S, Lie DC (2011) CREB in adult neurogenesis—master and partner in the development of adult-born neurons? Eur J Neurosci 33:1078–1086

    PubMed  Google Scholar 

  101. Herold S, Jagasia R, Merz K, Wassmer K, Lie DC (2011) CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Mol Cell Neurosci 46:79–88

    PubMed  CAS  Google Scholar 

  102. Viosca J, Lopez de Armentia M, Jancic D, Barco A (2009) Enhanced CREB-dependent gene expression increases the excitability of neurons in the basal amygdala and primes the consolidation of contextual and cued fear memory. Learn Mem 16:193–197

    PubMed  Google Scholar 

  103. Dash PK, Hochner B, Kandel ER (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345:718–721

    PubMed  CAS  Google Scholar 

  104. Byers D, Davis RL, Kiger JA Jr (1981) Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature 289:79–81

    PubMed  CAS  Google Scholar 

  105. Dudai Y, Uzzan A, Zvi S (1983) Abnormal activity of adenylate cyclase in the Drosophila memory mutant rutabaga. Neurosci Lett 42:207–212

    PubMed  CAS  Google Scholar 

  106. Waddell S, Quinn WG (2001) Flies, genes, and learning. Annu Rev Neurosci 24:1283–1309

    PubMed  CAS  Google Scholar 

  107. Taubenfeld SM, Wiig KA, Bear MF, Alberini CM (1999) A molecular correlate of memory and amnesia in the hippocampus [letter]. Nat Neurosci 2:309–310

    PubMed  CAS  Google Scholar 

  108. Impey S, Smith DM, Obrietan K, Donahue R, Wade C et al (1998) Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat Neurosci 1:595–601

    PubMed  CAS  Google Scholar 

  109. Porte Y, Buhot MC, Mons NE (2008) Spatial memory in the Morris water maze and activation of cyclic AMP response element-binding (CREB) protein within the mouse hippocampus. Learn Mem 15:885–894

    PubMed  Google Scholar 

  110. Guzowski JF, McGaugh JL (1997) Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc Natl Acad Sci U S A 94:2693–2698

    PubMed  CAS  Google Scholar 

  111. Graves L, Dalvi A, Lucki I, Blendy JA, Abel T (2002) Behavioral analysis of CREB alphadelta mutation on a B6/129 F1 hybrid background. Hippocampus 12:18–26

    PubMed  CAS  Google Scholar 

  112. Kim R, Moki R, Kida S (2011) Molecular mechanisms for the destabilization and restabilization of reactivated spatial memory in the Morris water maze. Mol Brain 4:9

    PubMed  CAS  Google Scholar 

  113. Kogan JH, Frankland PW, Blendy JA, Coblentz J, Marowitz Z et al (1997) Spaced training induces normal long-term memory in CREB mutant mice. Curr Biol 7:1–11

    PubMed  CAS  Google Scholar 

  114. Kogan JH, Frankland PW, Silva AJ (2000) Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus 10:47–56

    PubMed  CAS  Google Scholar 

  115. Viosca J, Malleret G, Bourtchouladze R, Benito E, Vronskava S et al (2009) Chronic enhancement of CREB activity in the hippocampus interferes with the retrieval of spatial information. Learn Mem 16:198–209

    PubMed  Google Scholar 

  116. Josselyn SA, Shi C, Carlezon WA Jr, Neve RL, Nestler EJ et al (2001) Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J Neurosci 21:2404–2412

    PubMed  CAS  Google Scholar 

  117. Josselyn SA, Kida S, Silva AJ (2004) Inducible repression of CREB function disrupts amygdala-dependent memory. Neurobiol Learn Mem 82:159–163

    PubMed  CAS  Google Scholar 

  118. Brightwell JJ, Smith CA, Countryman RA, Neve RL, Colombo PJ (2005) Hippocampal overexpression of mutant creb blocks long-term, but not short-term memory for a socially transmitted food preference. Learn Mem 12:12–17

    PubMed  Google Scholar 

  119. Brightwell JJ, Smith CA, Neve RL, Colombo PJ (2008) Transfection of mutant CREB in the striatum, but not the hippocampus, impairs long-term memory for response learning. Neurobiol Learn Mem 89:27–35

    PubMed  CAS  Google Scholar 

  120. Brightwell JJ, Smith CA, Neve RL, Colombo PJ (2007) Long-term memory for place learning is facilitated by expression of cAMP response element-binding protein in the dorsal hippocampus. Learn Mem 14:195–199

    PubMed  Google Scholar 

  121. Sekeres MJ, Neve RL, Frankland PW, Josselyn SA (2010) Dorsal hippocampal CREB is both necessary and sufficient for spatial memory. Learn Mem 17:280–283

    PubMed  CAS  Google Scholar 

  122. Han JH, Yiu AP, Cole CJ, Hsiang HL, Neve RL et al (2008) Increasing CREB in the auditory thalamus enhances memory and generalization of auditory conditioned fear. Learn Mem 15:443–453

    PubMed  Google Scholar 

  123. Wallace TL, Stellitano KE, Neve RL, Duman RS (2004) Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety. Biol Psychiatry 56:151–160

    PubMed  CAS  Google Scholar 

  124. Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A et al (2007) Neuronal competition and selection during memory formation. Science 316:457–460

    PubMed  CAS  Google Scholar 

  125. Josselyn SA (2010) Continuing the search for the engram: examining the mechanism of fear memories. J Psychiatry Neurosci 35:221–228

    PubMed  Google Scholar 

  126. Silva AJ, Zhou Y, Rogerson T, Shobe J, Balaji J (2009) Molecular and cellular approaches to memory allocation in neural circuits. Science 326:391–395

    PubMed  CAS  Google Scholar 

  127. Lee MM, Badache A, DeVries GH (1999) Phosphorylation of CREB in axon-induced Schwann cell proliferation. J Neurosci Res 55:702–712

    PubMed  CAS  Google Scholar 

  128. Stevens B, Fields RD (2000) Response of Schwann cells to action potentials in development. Science 287:2267–2271

    PubMed  CAS  Google Scholar 

  129. Lonze BE, Riccio A, Cohen S, Ginty DD (2002) Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34:371–385

    PubMed  CAS  Google Scholar 

  130. Andreatta CP, Nahreini P, Hanson AJ, Prasad KN (2004) Regulated expression of VP16CREB in neuroblastoma cells: analysis of differentiation and apoptosis. J Neurosci Res 78:570–579

    PubMed  CAS  Google Scholar 

  131. Redmond L, Kashani AH, Ghosh A (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34:999–1010

    PubMed  CAS  Google Scholar 

  132. Barth AL, McKenna M, Glazewski S, Hill P, Impey S et al (2000) Upregulation of cAMP response element-mediated gene expression during experience-dependent plasticity in adult neocortex. J Neurosci 20:4206–4216

    PubMed  CAS  Google Scholar 

  133. Pham TA, Impey S, Storm DR, Stryker MP (1999) CRE-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period [published erratum appears in Neuron 1999 Mar;22(3):635]. Neuron 22:63–72

    PubMed  CAS  Google Scholar 

  134. Pham TA, Rubenstein JL, Silva AJ, Storm DR, Stryker MP (2001) The CRE/CREB pathway is transiently expressed in thalamic circuit development and contributes to refinement of retinogeniculate axons. Neuron 31:409–420

    PubMed  CAS  Google Scholar 

  135. Pham TA, Graham SJ, Suzuki S, Barco A, Kandel ER et al (2004) A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB. Learn Mem 11:738–747

    PubMed  Google Scholar 

  136. Bonni A, Brunet A, West AE, Datta SR, Takasu MA et al (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286:1358–1362

    PubMed  CAS  Google Scholar 

  137. Walton MR, Dragunow I (2000) Is CREB a key to neuronal survival? Trends Neurosci 23:48–53

    PubMed  CAS  Google Scholar 

  138. Dawson TM, Ginty DD (2002) CREB family transcription factors inhibit neuronal suicide. Nat Med 8:450–451

    PubMed  CAS  Google Scholar 

  139. Lee B, Butcher GQ, Hoyt KR, Impey S, Obrietan K (2005) Activity-dependent neuroprotection and cAMP response element-binding protein (CREB): kinase coupling, stimulus intensity, and temporal regulation of CREB phosphorylation at serine 133. J Neurosci 25:1137–1148

    PubMed  CAS  Google Scholar 

  140. Song H, Ming G, He Z, Lehmann M, McKerracher L et al (1998) Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281:1515–1518

    PubMed  CAS  Google Scholar 

  141. Cai D, Shen Y, De Bellard M, Tang S, Filbin MT (1999) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22:89–101

    PubMed  CAS  Google Scholar 

  142. Qiu J, Cai D, Dai H, McAtee M, Hoffman PN et al (2002) Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34:895–903

    PubMed  CAS  Google Scholar 

  143. Valor LM, Jancic D, Lujan R, Barco A (2010) Ultrastructural and transcriptional profiling of neuropathological misregulation of CREB function. Cell Death Differ

  144. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    PubMed  CAS  Google Scholar 

  145. Pandey SC, Chartoff EH, Carlezon WA Jr, Zou J, Zhang H et al (2005) CREB gene transcription factors: role in molecular mechanisms of alcohol and drug addiction. Alcohol Clin Exp Res 29:176–184

    PubMed  CAS  Google Scholar 

  146. Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7:295–308

    PubMed  CAS  Google Scholar 

  147. van Bokhoven H, Kramer JM (2010) Disruption of the epigenetic code: an emerging mechanism in mental retardation. Neurobiol Dis 39:3–12

    PubMed  Google Scholar 

  148. Saura CA, Valero J (2011) The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 22:153–169

    PubMed  Google Scholar 

  149. Brown TE, Lee BR, Mu P, Ferguson D, Dietz D et al (2011) A silent synapse-based mechanism for cocaine-induced locomotor sensitization. J Neurosci 31:8163–8174

    PubMed  CAS  Google Scholar 

  150. Barco A, Pittenger C, Kandel ER (2003) CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. Expert Opin Ther Targets 7:101–114

    PubMed  CAS  Google Scholar 

  151. Tully T, Bourtchouladze R, Scott R, Tallman J (2003) Targeting the CREB pathway for memory enhancers. Nat Rev Drug Discov 2:267–277

    PubMed  CAS  Google Scholar 

  152. Maldonado R, Blendy JA, Tzavara E, Gass P, Roques BP et al (1996) Reduction of morphine abstinence in mice with a mutation in the gene encoding CREB. Science 273:657–659

    PubMed  CAS  Google Scholar 

  153. Cho YH, Giese KP, Tanila H, Silva AJ, Eichenbaum H (1998) Abnormal hippocampal spatial representations in alphaCaMKIIT286A and CREBalphaDelta−mice. Science 279:867–869

    PubMed  CAS  Google Scholar 

  154. Pandey SC, Mittal N, Silva AJ (2000) Blockade of cyclic AMP-responsive element DNA binding in the brain of CREB delta/alpha mutant mice. Neuroreport 11:2577–2580

    PubMed  CAS  Google Scholar 

  155. Conti AC, Cryan JF, Dalvi A, Lucki I, Blendy JA (2002) cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J Neurosci 22:3262–3268

    PubMed  CAS  Google Scholar 

  156. Walters CL, Godfrey M, Li X, Blendy JA (2005) Alterations in morphine-induced reward, locomotor activity, and thermoregulation in CREB-deficient mice. Brain Res 1032:193–199

    PubMed  CAS  Google Scholar 

  157. Chen J, Kelz MB, Zeng G, Sakai N, Steffen C et al (1998) Transgenic animals with inducible, targeted gene expression in brain. Mol Pharmacol 54:495–503

    PubMed  CAS  Google Scholar 

  158. Sakai N, Thome J, Newton SS, Chen J, Kelz MB et al (2002) Inducible and brain region-specific CREB transgenic mice. Mol Pharmacol 61:1453–1464

    PubMed  CAS  Google Scholar 

  159. McClung CA, Nestler EJ (2003) Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat Neurosci 6:1208–1215

    PubMed  CAS  Google Scholar 

  160. Fujioka T, Fujioka A, Duman RS (2004) Activation of cAMP signaling facilitates the morphological maturation of newborn neurons in adult hippocampus. J Neurosci 24:319–328

    PubMed  CAS  Google Scholar 

  161. Pittenger C, Fasano S, Mazzocchi-Jones D, Dunnett SB, Kandel ER et al (2006) Impaired bidirectional synaptic plasticity and procedural memory formation in striatum-specific cAMP response element-binding protein-deficient mice. J Neurosci 26:2808–2813

    PubMed  CAS  Google Scholar 

  162. Fasano S, Pittenger C, Brambilla R (2009) Inhibition of CREB activity in the dorsal portion of the striatum potentiates behavioral responses to drugs of abuse. Front Behav Neurosci 3:29

    PubMed  Google Scholar 

  163. Sanchis-Segura C, Jancic D, Jimenez-Minchan M, Barco A (2009) Inhibition of cAMP responsive element binding protein in striatal neurons enhances approach and avoidance responses towards morphine- and morphine withdrawal-related cues. Front Behav Neurosci 3:30

    PubMed  Google Scholar 

  164. Lee B, Cao R, Choi YS, Cho HY, Rhee AD et al (2009) The CREB/CRE transcriptional pathway: protection against oxidative stress-mediated neuronal cell death. J Neurochem 108:1251–1265

    PubMed  CAS  Google Scholar 

  165. Carlezon WA Jr, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES et al (1998) Regulation of cocaine reward by CREB. Science 282:2272–2275

    PubMed  CAS  Google Scholar 

  166. Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ et al (2001) Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J Neurosci 21:7397–7403

    PubMed  CAS  Google Scholar 

  167. Mower AF, Liao DS, Nestler EJ, Neve RL, Ramoa AS (2002) cAMP/Ca2+ response element-binding protein function is essential for ocular dominance plasticity. J Neurosci 22:2237–2245

    PubMed  CAS  Google Scholar 

  168. Barrot M, Olivier JD, Perrotti LI, DiLeone RJ, Berton O et al (2002) CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci U S A 99:11435–11440

    PubMed  CAS  Google Scholar 

  169. Barrot M, Wallace DL, Bolanos CA, Graham DL, Perrotti LI et al (2005) Regulation of anxiety and initiation of sexual behavior by CREB in the nucleus accumbens. Proc Natl Acad Sci U S A 102:8357–8362

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Franck Aguila (IPMC, France) for the design of Fig. 3. The authors also thank Nicole Calakos (Duke University, USA) and Luis M. Valor and other members of the Barco and Marie labs for critical reading of the manuscript. This research was supported by grants from the Spanish Ministry of Science and Innovation BFU2008-00611 (A.B.), CSD2007-00023 (A.B.), and SAF2008-03194-E (part of the coordinated ERA-Net NEURON project Epitherapy) (A.B.); ATIP grant (CNRS) (H.M.); and the French Foundation Plan Alzheimer (H.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angel Barco or Hélène Marie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barco, A., Marie, H. Genetic Approaches to Investigate the Role of CREB in Neuronal Plasticity and Memory. Mol Neurobiol 44, 330–349 (2011). https://doi.org/10.1007/s12035-011-8209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-011-8209-x

Keywords

Navigation