Skip to main content

Advertisement

Log in

Pituitary Adenylate Cyclase-Activating Peptide (PACAP) Signaling and the Dark Side of Addiction

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

While addiction to drugs of abuse represents a significant health problem worldwide, the behavioral and neural mechanisms that underlie addiction and relapse are largely unclear. The concept of the dark side of addiction, developed and explored by George Koob and colleagues, describes a systematic decrease in reward-related processing following drug self-administration and subsequent recruitment of anti-reward (i.e., stress) systems. Indeed, the activation of central nervous system (CNS) stress-response systems by drugs of abuse is contributory not only to mood and anxiety-related disorders but critical to both the maintenance of addiction and relapse following abstinence. In both human and animal studies, compounds that activate the bed nucleus of the stria terminalis (BNST) have roles in stress-related behaviors and addiction processes. The activation of pituitary adenylate cyclase-activating peptide (PACAP) systems in the BNST mediates many consequences of chronic stressor exposure that may engage in part downstream corticotropin-releasing hormone (CRH) signaling. Similar to footshock stress, the BNST administration of PACAP or the PAC1 receptor-specific agonist maxadilan can facilitate relapse following extinction of cocaine-seeking behavior. Further, in the same paradigm, the footshock-induced relapse could be attenuated following BNST pretreatment with PAC1 receptor antagonist PACAP6-38, implicating PACAP systems as critical components underlying stress-induced reinstatement. In congruence with previous work, the PAC1 receptor internalization and endosomal MEK/ERK signaling appear contributory mechanisms to the addiction processes. The studies offer new insights and approaches to addiction and relapse therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alheid GF, Beltramino CA, De Olmos JS, Forbes MS, Swanson DJ, Heimer L (1998) The neuronal organization of the supracapsular part of the stria terminalis in the rat: the dorsal component of the extended amygdala. Neuroscience 84(4):967–996

    Article  CAS  PubMed  Google Scholar 

  • Arató M, Bánki CM, Bissette G, Nemeroff CB (1989) Elevated CSF CRF in suicide victims. Biol Psychiatry 25(3):355–359

    Article  PubMed  Google Scholar 

  • Avery SN, Clauss JA, Blackford JU (2016) The human BNST: functional role in anxiety and addiction. Neuropsychopharmacology 41(1):126–141

    Article  CAS  PubMed  Google Scholar 

  • Baker DG, West SA, Nicholson WE, Ekhator NN, Kasckow JW, Hill KK et al (1999) Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am J Psychiatr 156(4):585–588

    CAS  PubMed  Google Scholar 

  • Bale TL, Vale WW (2004) CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 44:525–557

    Article  CAS  PubMed  Google Scholar 

  • Bangasser DA, Kawasumi Y (2015) Cognitive disruptions in stress-related psychiatric disorders: a role for corticotropin releasing factor (CRF). Horm Behav 76:125–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand G, Puech R, Maisonnasse Y, Bockaert J, Loubatières-Mariani MM (1996) Comparative effects of PACAP and VIP on pancreatic endocrine secretions and vascular resistance in rat. Br J Pharmacol 117(4):764–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouton ME (2014) Why behavior change is difficult to sustain. Prev Med 68:29–36

    Article  PubMed  Google Scholar 

  • Braas KM, May V, Harakall SA, Hardwick JC, Parsons RL (1998) Pituitary adenylate cyclase-activating polypeptide expression and modulation of neuronal excitability in guinea pig cardiac ganglia. J Neurosci 18(23):9766–9779

    Article  CAS  PubMed  Google Scholar 

  • Braas KM, Rossignol TM, Girard BM, May V, Parsons RL (2004) Pituitary adenylate cyclase activating polypeptide (PACAP) decreases neuronal somatostatin immunoreactivity in cultured guinea-pig parasympathetic cardiac ganglia. Neuroscience 126(2):335–346

    Article  CAS  PubMed  Google Scholar 

  • Breese GR, Sinha R, Heilig M (2011) Chronic alcohol neuroadaptation and stress contribute to susceptibility for alcohol craving and relapse. Pharmacol Ther 129(2):149–171

    Article  CAS  PubMed  Google Scholar 

  • Bruijnzeel AW, Small E, Pasek TM, Yamada H (2010) Corticotropin-releasing factor mediates the dysphoria-like state associated with alcohol withdrawal in rats. Behav Brain Res 210(2):288–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buffalari DM, Baldwin CK, Feltenstein MW, See RE (2012) Corticotrophin releasing factor (CRF) induced reinstatement of cocaine seeking in male and female rats. Physiol Behav 105(2):209–214

    Article  CAS  PubMed  Google Scholar 

  • Caine SB, Heinrichs SC, Coffin VL, Koob GF (1995) Effects of the dopamine D-1 antagonist SCH 23390 microinjected into the accumbens, amygdala or striatum on cocaine self-administration in the rat. Brain Res 692(1–2):47–56

    Article  CAS  PubMed  Google Scholar 

  • Carlezon WA, Haile CN, Coopersmith R, Hayashi Y, Malinow R, Neve RL, Nestler EJ (2000) Distinct sites of opiate reward and aversion within the midbrain identified using a herpes simplex virus vector expressing GluR1. J Neurosci 20(5):RC62

    Article  PubMed  Google Scholar 

  • Carroll ME, Comer SD (1996) Animal models of relapse. Exp Clin Psychopharmacol 4(1):11–18

    Article  CAS  Google Scholar 

  • Choi DC, Furay AR, Evanson NK, Ostrander MM, Ulrich-Lai YM, Herman JP (2007) Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic–pituitary–adrenal axis activity: implications for the integration of limbic inputs. J Neurosci 27(8):2025–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clason TA, Girard BM, May V, Parsons RL (2016) Activation of MEK/ERK signaling by PACAP in guinea pig cardiac neurons. J Mol Neurosci 59(2):309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contarino A, Papaleo F (2005) The corticotropin-releasing factor receptor-1 pathway mediates the negative affective states of opiate withdrawal. Proc Natl Acad Sci U S A 102(51):18649–18654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crestani CC, Alves FH, Gomes FV, Resstel L, Correa F, Herman JP (2013) Mechanisms in the bed nucleus of the stria terminalis involved in control of autonomic and neuroendocrine functions: a review. Curr Neuropharmacol 11(2):141–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis M, Walker DL, Miles L, Grillon C (2010) Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 35(1):105–135

    Article  PubMed  Google Scholar 

  • Dedic N, Chen A, Deussing JM (2018) The CRF family of neuropeptides and their receptors-mediators of the central stress response. Curr Mol Pharmacol 11(1):4–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong HW, Petrovich GD, Watts AG, Swanson LW (2001) Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. J Comp Neurol 436(4):430–455

    Article  CAS  PubMed  Google Scholar 

  • Dore R, Iemolo A, Smith KL, Wang X, Cottone P, Sabino V (2013) CRF mediates the anxiogenic and anti-rewarding, but not the anorectic effects of PACAP. Neuropsychopharmacology 38(11):2160–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn AJ, Berridge CW (1987) Corticotropin-releasing factor administration elicits a stress-like activation of cerebral catecholaminergic systems. Pharmacol Biochem Behav 27(4):685–691

    Article  CAS  PubMed  Google Scholar 

  • Dunn AJ, Berridge CW (1990) Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Rev 15(2):71–100

    Article  CAS  PubMed  Google Scholar 

  • Dunn AJ, File SE (1987) Corticotropin-releasing factor has an anxiogenic action in the social interaction test. Horm Behav 21(2):193–202

    Article  CAS  PubMed  Google Scholar 

  • Duvarci S, Bauer EP, Paré D (2009) The bed nucleus of the stria terminalis mediates inter-individual variations in anxiety and fear. J Neurosci 29(33):10357–10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein DH, Willner-Reid J, Vahabzadeh M, Mezghanni M, Lin JL, Preston KL (2009) Real-time electronic diary reports of cue exposure and mood in the hours before cocaine and heroin craving and use. Arch Gen Psychiatry 66(1):88–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Erb S, Stewart J (1999) A role for the bed nucleus of the stria terminalis, but not the amygdala, in the effects of corticotropin-releasing factor on stress-induced reinstatement of cocaine seeking. J Neurosci 19(20):RC35–RC35

    Article  CAS  PubMed  Google Scholar 

  • Erb S, Shaham Y, Stewart J (1998) The role of corticotropin-releasing factor and corticosterone in stress- and cocaine-induced relapse to cocaine seeking in rats. J Neurosci 18(14):5529–5536

    Article  CAS  PubMed  Google Scholar 

  • Feit MD, Taylor OD (2015) Contemporary substance use research

  • Fox HC, Seo D, Tuit K, Hansen J, Kimmerling A, Morgan PT, Sinha R (2012) Guanfacine effects on stress, drug craving and prefrontal activation in cocaine dependent individuals: preliminary findings. J Psychopharmacol 26(7):958–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox HC, Morgan PT, Sinha R (2014) Sex differences in guanfacine effects on drug craving and stress arousal in cocaine-dependent individuals. Neuropsychopharmacology 39(6):1527–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George O, Ghozland S, Azar MR, Cottone P, Zorrilla EP, Parsons LH, O'Dell LE, Richardson HN, Koob GF (2007) CRF–CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine-dependent rats. Proc Natl Acad Sci 104(43):17198–17203

    Article  PubMed  Google Scholar 

  • Goeders NE (2002) The HPA axis and cocaine reinforcement. Psychoneuroendocrinology 27(1):13–33

    Article  CAS  PubMed  Google Scholar 

  • Gungor NZ, Paré D (2016) Functional heterogeneity in the bed nucleus of the stria terminalisfunctional heterogeneity in the bed nucleus of the stria terminalis. J Neurosci 36(31):8038–8049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammack SE, May V (2015) Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry 78(3):167–177

    Article  CAS  PubMed  Google Scholar 

  • Hammack SE, Cheung J, Rhodes KM, Schutz KC, Falls WA, Braas KM, May V (2009) Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology 34(6):833–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammack SE, Roman CW, Lezak KR, Kocho-Shellenberg M, Grimmig B, Falls WA, Braas K, May V (2010) Roles for pituitary adenylate cyclase-activating peptide (PACAP) expression and signaling in the bed nucleus of the stria terminalis (BNST) in mediating the behavioral consequences of chronic stress. J Mol Neurosci 42(3):327–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammack SE, Cooper MA, Lezak KR (2012) Overlapping neurobiology of learned helplessness and conditioned defeat: implications for PTSD and mood disorders. Neuropharmacology 62(2):565–575

    Article  CAS  PubMed  Google Scholar 

  • Hand TH, Koob GF, Stinus L, Le Moal M (1988) Aversive properties of opiate receptor blockade: evidence for exclusively central mediation in naive and morphine-dependent rats. Brain Res 474(2):364–368

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Shintani N, Tanida M, Hayata A, Hashimoto R, Baba A (2011) PACAP is implicated in the stress axes. Curr Pharm Des 17(10):985–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto H, Shintani N, Ago Y, Hayata-Takano A, Nakazawa T, Hashimoto R et al (2016) Implications of PACAP signaling in psychiatric disorders. In: Pituitary Adenylate Cyclase Activating Polypeptide—PACAP. Springer, Cham, pp 757–766

    Chapter  Google Scholar 

  • Hauger RL, Risbrough V, Brauns O, Dautzenberg FM (2006) Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol Disord Drug Targets 5(4):453–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heimer L, Alheid GF (1991) Piecing together the puzzle of basal forebrain anatomy. In: The basal forebrain. Springer, Boston, pp 1–42

    Google Scholar 

  • Herman JP (2012) Neural pathways of stress integration: relevance to alcohol abuse. Alcohol Res 34(4):441–447

    PubMed  PubMed Central  Google Scholar 

  • Herman JP, Cullinan WE, Watson SJ (1994) Involvement of the bed nucleus of the stria terminalis in tonic regulation of paraventricular hypothalamic CRH and AVP mRNA expression. J Neuroendocrinol 6(4):433–442

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Prewitt CMF, Cullinan WE (1996) Neuronal circuit regulation of the hypothalamo-pituitary-adrenocortical stress axis. Crit Rev Neurobiol 10(3-4)

  • Higgins ST, Silverman K, Sigmon SC, Naito NA (2012) Incentives and health: an introduction. Prev Med 55:S2–S6

    Article  PubMed  PubMed Central  Google Scholar 

  • Hikosaka O (2010) The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 11(7):503–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasinska AJ, Stein EA, Kaiser J, Naumer MJ, Yalachkov Y (2014) Factors modulating neural reactivity to drug cues in addiction: a survey of human neuroimaging studies. Neurosci Biobehav Rev 38:1–16

    Article  PubMed  Google Scholar 

  • Ju G, Swanson LW (1989) Studies on the cellular architecture of the bed nuclei of the stria terminalis in the rat: I. Cytoarchitecture. J Comp Neurol 280(4):587–602

    Article  CAS  PubMed  Google Scholar 

  • King JS, Bishop GA (2002) The distribution and cellular localization of CRF-R1 in the vermis of the postnatal mouse cerebellum. Exp Neurol 178(2):175–185

    Article  CAS  PubMed  Google Scholar 

  • Kocho-Schellenberg M, Lezak KR, Harris OM, Roelke E, Gick N, Choi I et al (2014) PACAP in the BNST produces anorexia and weight loss in male and female rats. Neuropsychopharmacology 39(7):1614–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koob GF (1999) Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry 46(9):1167–1180

    Article  CAS  PubMed  Google Scholar 

  • Koob GF (2008) A role for brain stress systems in addiction. Neuron 59(1):11–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koob GF (2010) The role of CRF and CRF-related peptides in the dark side of addiction. Brain Res 1314:3–14

    Article  CAS  PubMed  Google Scholar 

  • Koob GF (2015) Medications for treatment of alcoholism that derive from the dark side of addiction. Can J Addict 6(1):27

    Google Scholar 

  • Koob GF (2016) The neurobiology of reward and stress and its relevance for understanding drug seeking and dependence symptomatology. The Oxford handbook of substance use and substance use disorders, 1, 166–191

  • Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278(5335):52–58

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24(2):97–129

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 8(11):1442–1444

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Le Moal M (2008) Addiction and the brain antireward system. Annu Rev Psychol 59:29–53

    Article  PubMed  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238

    Article  Google Scholar 

  • Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3(8):760–773

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Davis M (1997) Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci 17(16):6434–6446

    Article  CAS  PubMed  Google Scholar 

  • Lehmann ML, Mustafa T, Eiden AM, Herkenham M, Eiden LE (2013) PACAP-deficient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress. Psychoneuroendocrinology 38(5):702–715

    Article  CAS  PubMed  Google Scholar 

  • Levran O, Peles E, Randesi M, Li Y, Rotrosen J, Ott J, Adelson M, Kreek MJ (2014) Stress-related genes and heroin addiction: a role for a functional FKBP5 haplotype. Psychoneuroendocrinology 45:67–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lezak KR, Roelke E, Harris OM, Choi I, Edwards S, Gick N et al (2014) Pituitary adenylate cyclase-activating polypeptide (PACAP) in the bed nucleus of the stria terminalis (BNST) increases corticosterone in male and female rats. Psychoneuroendocrinology 45:11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lezak KR, Missig G, Carlezon WA Jr (2017) Behavioral methods to study anxiety in rodents. Dialogues Clin Neurosci 19(2):181–191

    PubMed  PubMed Central  Google Scholar 

  • Logrip ML, Koob GF, Zorrilla EP (2011) Role of corticotropin-releasing factor in drug addiction. CNS Drugs 25(4):271–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10(6):434–445

    Article  CAS  PubMed  Google Scholar 

  • Majzoub JA (2006) Corticotropin-releasing hormone physiology. Eur J Endocrinol 155(suppl 1):S71–S76

    Article  CAS  Google Scholar 

  • Mantsch JR, Baker DA, Funk D, Lê AD, Shaham Y (2016) Stress-induced reinstatement of drug seeking: 20 years of progress. Neuropsychopharmacology 41(1):335–356

    Article  CAS  PubMed  Google Scholar 

  • Marcinkiewcz CA, Mazzone CM, D’Agostino G, Halladay LR, Hardaway JA, DiBerto JF et al (2016) Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature 537(7618):97–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May V, Lutz E, MacKenzie C, Schutz KC, Dozark K, Braas KM (2010) Pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC HOP1 receptor activation coordinates multiple neurotrophic signaling pathways. J Biol Chem 285(13):9749–9761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338(3):171–179

    Article  CAS  Google Scholar 

  • McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583(2–3):174–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McEwen BS, Chattarji S (2007) Neuroendocrinology of stress. In: Handbook of neurochemistry and molecular neurobiology. Springer, US, pp 571–593

    Chapter  Google Scholar 

  • McKee SA, Potenza MN, Kober H, Sofuoglu M, Arnsten AF, Picciotto MR, Weinberger AH, Ashare R, Sinha R (2015) A translational investigation targeting stress-reactivity and prefrontal cognitive control with guanfacine for smoking cessation. J Psychopharmacol 29(3):300–311

    Article  CAS  PubMed  Google Scholar 

  • Meloni EG, Venkataraman A, Donahue RJ, Carlezon WA (2016) Bi-directional effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on fear-related behavior and c-Fos expression after fear conditioning in rats. Psychoneuroendocrinology 64:12–21

    Article  CAS  PubMed  Google Scholar 

  • Merali Z, Kent P, Du L, Hrdina P, Palkovits M, Faludi G et al (2006) Corticotropin-releasing hormone, arginine vasopressin, gastrin-releasing peptide, and neuromedin B alterations in stress-relevant brain regions of suicides and control subjects. Biol Psychiatry 59(7):594–602

    Article  CAS  PubMed  Google Scholar 

  • Miles OW, Thrailkill EA, Linden AK, May V, Bouton ME, Hammack SE (2017) Pituitary adenylate cyclase-activating peptide in the bed nucleus of the Stria terminalis mediates stress-induced reinstatement of cocaine seeking in rats. Neuropsychopharmacology 43:978–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missig G, Roman CW, Vizzard MA, Braas KM, Hammack SE, May V (2014) Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology 86:38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missig G, Mei L, Vizzard MA, Braas KM, Waschek JA, Ressler KJ, Hammack SE, May V (2017) Parabrachial pituitary adenylate cyclase-activating polypeptide activation of amygdala endosomal extracellular signal-regulated kinase signaling regulates the emotional component of pain. Biol Psychiatry 81(8):671–682

    Article  CAS  PubMed  Google Scholar 

  • Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164(1):567–574

    Article  CAS  PubMed  Google Scholar 

  • Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, ..., Arimura A (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170(2):643–648

  • Molander A, Vengeliene V, Heilig M, Wurst W, Deussing JM, Spanagel R (2012) Brain-specific inactivation of the Crhr1 gene inhibits post-dependent and stress-induced alcohol intake, but does not affect relapse-like drinking. Neuropsychopharmacology 37(4):1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Möller C, Wiklund L, Sommer W, Thorsell A, Heilig M (1997) Decreased experimental anxiety and voluntary ethanol consumption in rats following central but not basolateral amygdala lesions. Brain Res 760(1–2):94–101

    Article  PubMed  Google Scholar 

  • Moran-Santa Maria MM, Baker NL, Ramakrishnan V, Brady KT, McRae-Clark A (2015) Impact of acute guanfacine administration on stress and cue reactivity in cocaine-dependent individuals. Am J Drug Alcohol Abuse 41(2):146–152

    Article  PubMed  Google Scholar 

  • Mustafa T, Jiang SZ, Eiden AM, Weihe E, Thistlethwaite I, Eiden LE (2015) Impact of PACAP and PAC1 receptor deficiency on the neurochemical and behavioral effects of acute and chronic restraint stress in male C57BL/6 mice. Stress 18(4):408–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Zaragoza J, Nunez C, Laorden ML, Milanés MV (2010) Effects of corticotropin-releasing factor receptor-1 antagonists on the brain stress system responses to morphine withdrawal. Mol Pharmacol 77(5):864–873

    Article  CAS  PubMed  Google Scholar 

  • Nemeroff CB, Bissette G, Akil H, Fink M (1991) Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated with electroconvulsive therapy: corticotrophin-releasing factor, β-endorphin and somatostatin. Br J Psychiatry 158(1):59–63

    Article  CAS  PubMed  Google Scholar 

  • Norrholm SD, Das M, Légrádi G (2005) Behavioral effects of local microinfusion of pituitary adenylate cyclase activating polypeptide (PACAP) into the paraventricular nucleus of the hypothalamus (PVN). Regul Pept 128(1):33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastor R, Reed C, Burkhart-Kasch S, Li N, Sharpe AL, Coste SC, Stenzel-Poore MP, Phillips TJ (2011) Ethanol concentration-dependent effects and the role of stress on ethanol drinking in corticotropin-releasing factor type 1 and double type 1 and 2 receptor knockout mice. Psychopharmacology 218(1):169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pego JM, Morgado P, Pinto LG, Cerqueira JJ, Almeida OFX, Sousa N (2008) Dissociation of the morphological correlates of stress-induced anxiety and fear. Eur J Neurosci 27(6):1503–1516

    Article  CAS  PubMed  Google Scholar 

  • Price ML, Kirby LG, Valentino RJ, Lucki I (2002) Evidence for corticotropin-releasing factor regulation of serotonin in the lateral septum during acute swim stress: adaptation produced by repeated swimming. Psychopharmacology 162(4):406–414

    Article  CAS  PubMed  Google Scholar 

  • Radulovic J, Sydow S, Spiess J (1998) Characterization of native corticotropin-releasing factor receptor type 1 (cRFR1) in the rat and mouse central nervous system. J Neurosci Res 54(4):507–521

    Article  CAS  PubMed  Google Scholar 

  • Ramsay DS, Woods SC, Kaiyala KJ (2014) Drug-induced regulatory overcompensation has motivational consequences: implications for homeostatic and allostatic models of drug addiction. Temperature 1(3):248–256

    Article  Google Scholar 

  • Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K et al (2011) Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470(7335):492–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter RM, Weiss F (1999) In vivo crf release in rat amygdala is increased during cocaine withdrawal in self-administering rats. Synapse 32(4):254–261

    Article  CAS  PubMed  Google Scholar 

  • Roberto M, Cruz MT, Gilpin NW, Sabino V, Schweitzer P, Bajo M et al (2010) Corticotropin releasing factor-induced amygdala gamma-aminobutyric acid release plays a key role in alcohol dependence. Biol Psychiatry 67(9):831–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roman CW, Lezak KR, Hartsock MJ, Falls WA, Braas KM, Howard AB, Hammack SE, May V (2014) PAC1 receptor antagonism in the bed nucleus of the stria terminalis (BNST) attenuates the endocrine and behavioral consequences of chronic stress. Psychoneuroendocrinology 47:151–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakanaka M, Magari S, Shibasaki T, Lederis K (1988) Corticotropin releasing factor-containing afferents to the lateral septum of the rat brain. J Comp Neurol 270(3):404–415

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM (2004) Why zebras don’t get ulcers: the acclaimed guide to stress, stress-related diseases, and coping-now revised and updated. Holt paperbacks

  • Sarnyai Z, Bíró É, Gardi J, Vecsernyés M, Julesz J, Telegdy G (1995) Brain corticotropin-releasing factor mediates ‘anxiety-like’ behavior induced by cocaine withdrawal in rats. Brain Res 675(1–2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Schepers S (2017) Renewal in the context of stress: a potential mechanisms of stress-induced reinstatement. UVM Graduate College Dissertation and Theses

  • Schulkin J, Gold PW, McEwen BS (1998) Induction of corticotropin-releasing hormone gene expression by glucocorticoids: implication for understanding the states of fear and anxiety and allostatic load. Psychoneuroendocrinology 23(3):219–243

    Article  CAS  PubMed  Google Scholar 

  • Scott CK, Dennis ML, Laudet A, Funk RR, Simeone RS (2011) Surviving drug addiction: the effect of treatment and abstinence on mortality. Am J Public Health 101(4):737–744

    Article  PubMed  PubMed Central  Google Scholar 

  • Seiglie MP, Smith KL, Blasio A, Cottone P, Sabino V (2015) Pituitary adenylate cyclase-activating polypeptide induces a depressive-like phenotype in rats. Psychopharmacology 232(20):3821–3831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaham Y, Funk D, Erb S, Brown TJ, Walker CD, Stewart J (1997) Corticotropin-releasing factor, but not corticosterone, is involved in stress-induced relapse to heroin-seeking in rats. J Neurosci 17(7):2605–2614

    Article  CAS  PubMed  Google Scholar 

  • Shaham Y, Erb S, Leung S, Buczek Y, Stewart J (1998) CP-154,526, a selective, non-peptide antagonist of the corticotropin-releasing factor1 receptor attenuates stress-induced relapse to drug seeking in cocaine- and heroin-trained rats. Psychopharmacology 137(2):184–190

    Article  CAS  PubMed  Google Scholar 

  • Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Rev 33(1):13–33

    Article  CAS  PubMed  Google Scholar 

  • Sherwood NM, Krueckl SL, McRory JE (2000) The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 21(6):619–670

    CAS  PubMed  Google Scholar 

  • Sinha R (2001) How does stress increase risk of drug abuse and relapse? Psychopharmacology 158(4):343–359

    Article  CAS  PubMed  Google Scholar 

  • Sinha R (2007) The role of stress in addiction relapse. Curr Psychiatry Rep 9(5):388–395

    Article  PubMed  Google Scholar 

  • Sinha R, Catapano D, O’Malley S (1999) Stress-induced craving and stress response in cocaine dependent individuals. Psychopharmacology 142(4):343–351

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Garcia M, Paliwal P, Kreek MJ, Rounsaville BJ (2006) Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Arch Gen Psychiatry 63(3):324–331

    Article  PubMed  Google Scholar 

  • Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J (2013) Key role of CRF in the skin stress response system. Endocr Rev 34(6):827–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer WH, Rimondini R, Hansson AC, Hipskind PA, Gehlert DR, Barr CS, Heilig MA (2008) Upregulation of voluntary alcohol intake, behavioral sensitivity to stress, and amygdala crhr1 expression following a history of dependence. Biol Psychiatry 63(2):139–145

    Article  PubMed  Google Scholar 

  • Spiess J, Rivier J, Rivier C, Vale W (1981) Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proc Natl Acad Sci 78(10):6517–6521

    Article  CAS  PubMed  Google Scholar 

  • Stroth N, Eiden LE (2010) Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on pituitary adenylate cyclase-activating polypeptide signaling. Neuroscience 165(4):1025–1030

    Article  CAS  PubMed  Google Scholar 

  • Stroth N, Holighaus Y, Ait-Ali D, Eiden LE (2011) PACAP: a master regulator of neuroendocrine stress circuits and the cellular stress response. Ann N Y Acad Sci 1220(1):49–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroth N, Kuri BA, Mustafa T, Chan SA, Smith CB, Eiden LE (2013) PACAP controls adrenomedullary catecholamine secretion and expression of catecholamine biosynthetic enzymes at high splanchnic nerve firing rates characteristic of stress transduction in male mice. Endocrinology 154(1):330–339

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21(8):323–331

    Article  CAS  PubMed  Google Scholar 

  • Tjong YW, Ip SP, Lao L, Wu J, Fong HH, Sung JJ, Berman B, Che CT (2010) Neonatal maternal separation elevates thalamic corticotrophin releasing factor type 1 receptor expression response to colonic distension in rat. Neuro Endocrinol Lett 31(2):215–220

    CAS  PubMed  Google Scholar 

  • Tsukiyama N, Saida Y, Kakuda M, Shintani N, Hayata A, Morita Y et al (2011) PACAP centrally mediates emotional stress-induced corticosterone responses in mice. Stress 14(4):368–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213:1394–1397

    Article  CAS  PubMed  Google Scholar 

  • Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C et al (2000) Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 428(2):191–212

    Article  PubMed  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52(2):269–324

    CAS  PubMed  Google Scholar 

  • Vaudry D, Hamelink C, Damadzic R, Eskay RL, Gonzalez B, Eiden LE (2005) Endogenous PACAP acts as a stress response peptide to protect cerebellar neurons from ethanol or oxidative insult. Peptides 26(12):2518–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61(3):283–357

    Article  CAS  PubMed  Google Scholar 

  • Walker DL, Davis M (2008) Role of the extended amygdala in short-duration versus sustained fear: a tribute to Dr. Lennart Heimer. Brain Struct Funct 213(1–2):29–42

    Article  PubMed  Google Scholar 

  • Walker BM, Koob GF (2008) Pharmacological evidence for a motivational role of κ-opioid systems in ethanol dependence. Neuropsychopharmacology 33(3):643–652

    Article  CAS  PubMed  Google Scholar 

  • Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463(1–3):199–216

    Article  CAS  PubMed  Google Scholar 

  • Weiss F, Ciccocioppo R, Parsons LH, Katner S, Liu XIU, Zorrilla EP et al (2001) Compulsive drug-seeking behavior and relapse. Ann N Y Acad Sci 937(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Morales M (2010) A ventral tegmental CRF-glutamate-dopamine interaction in addiction. Brain Res 1314:38–43

    Article  CAS  PubMed  Google Scholar 

  • Zorrilla EP, Valdez GR, Weiss F (2001) Changes in levels of regional CRF-like-immunoreactivity and plasma corticosterone during protracted drug withdrawal in dependent rats. Psychopharmacology 158(4):374–381

    Article  CAS  PubMed  Google Scholar 

  • Zorrilla EP, Logrip ML, Koob GF (2014) Corticotropin releasing factor: a key role in the neurobiology of addiction. Front Neuroendocrinol 35(2):234–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia W. Miles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miles, O.W., May, V. & Hammack, S.E. Pituitary Adenylate Cyclase-Activating Peptide (PACAP) Signaling and the Dark Side of Addiction. J Mol Neurosci 68, 453–464 (2019). https://doi.org/10.1007/s12031-018-1147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-018-1147-6

Keywords

Navigation