Skip to main content
Log in

Pcdh11x Negatively Regulates Dendritic Branching

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Proper formation of neuronal dendritic branching is crucial for correct brain function. The number and distribution of receptive synaptic contacts are defined by the size and shape of dendritic arbors. Our previous research found that protocadherin 11 X-linked protein (Pcdh11x) is predominantly expressed in neurons and has an influence on dendritic branching. In this study, gain-of-function and loss-of-function experiments revealed that Pcdh11x acts as a negative regulator of dendritic branching in cultured cortical neurons derived from embryonic day 16 mice. Overexpression of wild-type Pcdh11x (Pcdh11x-GFP) reduced dendritic complexity, whereas knockdown of Pcdh11x increased dendritic branching. It was further demonstrated that Pcdh11x activates PI3K/AKT signaling to negatively regulate dendritic branching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Branco T, Clark BA, Hausser M (2010) Dendritic discrimination of temporal input sequences in cortical neurons. Science 329:1671–5

    Article  CAS  PubMed  Google Scholar 

  • Branco T, Hausser M (2011) Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69:885–92

    Article  CAS  PubMed  Google Scholar 

  • Ghysen A (2003) Dendritic arbors: a tale of living tiles. Curr Biol 13:R427–9

    Article  CAS  PubMed  Google Scholar 

  • Gidon A, Segev I (2012) Principles governing the operation of synaptic inhibition in dendrites. Neuron 75:330–41

    Article  CAS  PubMed  Google Scholar 

  • Hattori D, Millard SS, Wojtowicz WM, Zipursky SL (2008) Dscam-mediated cell recognition regulates neural circuit formation. Annu Rev Cell Dev Biol 24:597–620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hausser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290:739–44

    Article  CAS  PubMed  Google Scholar 

  • Jan YN, Jan LY (2010) Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci 11:316–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M (2005) Control of dendritic arborization by the phosphoinositide-3'-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci 25:11300–12

    Article  CAS  PubMed  Google Scholar 

  • Kutzing MK, Langhammer CG, Luo V, Lakdawala H, Firestein BL (2010) Automated Sholl analysis of digitized neuronal morphology at multiple scales. J Vis Exp 45:pii:2354. doi:10.3791/2354

  • Langhammer CG, Previtera ML, Sweet ES, Sran SS, Chen M, Firestein BL (2010) Automated Sholl analysis of digitized neuronal morphology at multiple scales: whole cell Sholl analysis versus Sholl analysis of arbor subregions. Cytometry A 77:1160–8

    Article  PubMed  Google Scholar 

  • Lavzin M, Rapoport S, Polsky A, Garion L, Schiller J (2012) Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490:397–401

    Article  CAS  PubMed  Google Scholar 

  • Leemhuis J, Boutillier S, Barth H et al (2004) Rho GTPases and phosphoinositide 3-kinase organize formation of branched dendrites. J Biol Chem 279:585–96

    Article  CAS  PubMed  Google Scholar 

  • Lin YC, Koleske AJ (2010) Mechanisms of synapse and dendrite maintenance and their disruption in psychiatric and neurodegenerative disorders. Annu Rev Neurosci 33:349–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morishita H, Yagi T (2007) Protocadherin family: diversity, structure, and function. Curr Opin Cell Biol 19:584–92

    Article  CAS  PubMed  Google Scholar 

  • Parrish JZ, Emoto K, Kim MD, Jan YN (2007) Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu Rev Neurosci 30:399–423

    Article  CAS  PubMed  Google Scholar 

  • Sholl D (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sperry R (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci U S A 50:703–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivasan Y, Elmer L, Davis J, Bennett V, Angelides K (1988) Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature 333:177–80

    Article  CAS  PubMed  Google Scholar 

  • Suo L, Lu H, Ying G, Capecchi MR, Wu Q (2012) Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase. J Mol Cell Biol 4:362–76

    Article  CAS  PubMed  Google Scholar 

  • Takeichi M (2007) The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 8:11–20

    Article  CAS  PubMed  Google Scholar 

  • Toyoda S, Kawaguchi M, Kobayashi T et al (2014) Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single neuron diversity. Neuron 82:94–108

    Article  CAS  PubMed  Google Scholar 

  • Yagi T (2013) Genetic basis of neuronal individuality in the mammalian brain. J Neurogenet 27:97–105

    Article  PubMed Central  PubMed  Google Scholar 

  • Ye B, Jan YN (2005) The cadherin superfamily and dendrite development. Trends Cell Biol 15:64–7

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Malenka RC (2003) Beta-catenin is critical for dendritic morphogenesis. Nat Neurosci 6:1169–77

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wu C, Liu N et al (2014) Protocadherin 11 X regulates differentiation and proliferation of neural stem cell in vitro and in vivo. J Mol Neurosci 54(2):199–210

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Lambert S, Malen PL, Carpenter S, Boland LM, Bennett V (1998) AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol 143:1295–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zipursky SL, Sanes JR (2010) Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly. Cell 143:343–53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Military Medical Project (BWS11J002, BWS12J010) and National Natural Science Foundation (No. 81401031). We thank Springer Language Editing (Project No.: C1501-40452-WuCuiying) for assisting in the preparation of this manuscript. The authors would like to thank all the anonymous reviewers for their valuable comments on how to improve the quality of this paper.

Conflict of Interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Zhang or Ruxiang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Niu, L., Yan, Z. et al. Pcdh11x Negatively Regulates Dendritic Branching. J Mol Neurosci 56, 822–828 (2015). https://doi.org/10.1007/s12031-015-0515-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0515-8

Keywords

Navigation