Skip to main content

Advertisement

Log in

α-Synuclein Overexpression Represses 14-3-3θ Transcription

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Previous gene microarray studies have shown that expression of 14-3-3θ is significantly decreased in an α-synuclein transgenic mouse model. In this study, we tested whether α-synuclein can regulate 14-3-3θ transcription. We demonstrate that the 14-3-3θ mRNA level is decreased in SH-SY5Y cells overexpressing α-synuclein. Luciferase activity under the control of the 14-3-3θ promoter is reduced both in stable SH-SY5Y cells constitutively overexpressing α-synuclein and in doxycycline-inducible SH-SY5Y cells upon α-synuclein induction, suggesting that the regulation of 14-3-3θ by α-synuclein occurs at the transcriptional level. Knockdown of α-synuclein by RNA interference does not increase the 14-3-3θ mRNA level. These findings suggest that α-synuclein represses 14-3-3θ transcription under pathologic conditions, but that regulation of 14-3-3θ expression is not a function of endogenous α-synuclein at baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asikainen S, Rudgalvyte M, Heikkinen L et al (2010) Global microRNA expression profiling of Caenorhabditis elegans Parkinson's disease models. J Mol Neurosci 41:210–218

    Article  PubMed  CAS  Google Scholar 

  • Athanassiadou A, Voutsinas G, Psiouri L et al (1999) Genetic analysis of families with Parkinson disease that carry the Ala53Thr mutation in the gene encoding alpha-synuclein. Am J Hum Genet 65:555–558

    Article  PubMed  CAS  Google Scholar 

  • Bassilana F, Mace N, Li Q et al (2005) Unraveling substantia nigra sequential gene expression in a progressive MPTP-lesioned macaque model of Parkinson's disease. Neurobiol Dis 20:93–103

    Article  PubMed  CAS  Google Scholar 

  • Berg D, Riess O, Bornemann A (2003a) Specification of 14-3-3 proteins in Lewy bodies. Ann Neurol 54:135

    Article  PubMed  Google Scholar 

  • Berg D, Holzmann C, Riess O (2003b) 14-3-3 proteins in the nervous system. Nat Rev Neurosci 4:752–762

    Article  PubMed  CAS  Google Scholar 

  • Betarbet R, Canet-Aviles RM, Sherer TB et al (2006) Intersecting pathways to neurodegeneration in Parkinson's disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis 22:404–420

    Article  PubMed  CAS  Google Scholar 

  • Botta-Orfila T, Tolosa E, Gelpi E et al (2012) Microarray expression analysis in idiopathic and LRRK2-associated Parkinson's disease. Neurobiol Dis 45:462–468

    Article  PubMed  CAS  Google Scholar 

  • Brunelli L, Cieslik KA, Alcorn JL, Vatta M, Baldini A (2007) Peroxisome proliferator-activated receptor-delta upregulates 14-3-3 epsilon in human endothelial cells via CCAAT/enhancer binding protein-beta. Circ Res 100:e59–71

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Dawson VL (2003) Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest 111:145–151

    PubMed  CAS  Google Scholar 

  • Dietz KC, Casaccia P (2010) HDAC inhibitors and neurodegeneration: at the edge between protection and damage. Pharmacol Res 62:11–17

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AT, Evron E, Umbricht CB et al (2000) High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci U S A 97:6049–6054

    Article  PubMed  CAS  Google Scholar 

  • Gray M, Shirasaki DI, Cepeda C et al (2008) Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 28:6182–6195

    Article  PubMed  CAS  Google Scholar 

  • Greene JG (2012) Current status and future directions of gene expression profiling in Parkinson's disease. Neurobiol Dis 45:76–82

    Article  PubMed  CAS  Google Scholar 

  • Greten-Harrison B, Polydoro M, Morimoto-Tomita M et al (2010) Alphabetagamma-synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proc Natl Acad Sci U S A 107:19573–19578

    Article  PubMed  CAS  Google Scholar 

  • Hu E, Dul E, Sung CM et al (2003) Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther 307:720–728

    Article  PubMed  CAS  Google Scholar 

  • Iwata N, Yamamoto H, Sasaki S et al (2000) Frequent hypermethylation of CpG islands and loss of expression of the 14-3-3 sigma gene in human hepatocellular carcinoma. Oncogene 19:5298–5302

    Article  PubMed  CAS  Google Scholar 

  • Jia H, Pallos J, Jacques V et al (2012) Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington's disease. Neurobiol Dis 46:351–361

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto Y, Akiguchi I, Nakamura S, Honjyo Y, Shibasaki H, Budka H (2002) 14-3-3 proteins in Lewy bodies in Parkinson disease and diffuse Lewy body disease brains. J Neuropathol Exp Neurol 61:245–253

    PubMed  CAS  Google Scholar 

  • Kontopoulos E, Parvin JD, Feany MB (2006) Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 15:3012–3023

    Article  PubMed  CAS  Google Scholar 

  • Kruger R, Kuhn W, Muller T et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet 18:106–108

    Article  PubMed  CAS  Google Scholar 

  • Leng Y, Chuang DM (2006) Endogenous alpha-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity. J Neurosci 26:7502–7512

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Miller RM, Callahan LM, Casaceli C et al (2004) Dysregulation of gene expression in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse substantia nigra. J Neurosci 24:7445–7454

    Article  PubMed  CAS  Google Scholar 

  • Min S, Liang X, Zhang M et al (2013) Multiple tumor-associated microRNAs modulate the survival and longevity of dendritic cells by targeting YWHAZ and Bcl2 signaling pathways. J Immunol 190:2437–2446

    Article  PubMed  CAS  Google Scholar 

  • Ostrerova N, Petrucelli L, Farrer M et al (1999) Alpha-synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci 19:5782–5791

    PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Chiba T, Sakata E et al (2006) 14-3-3eta is a novel regulator of parkin ubiquitin ligase. Embo J 25:211–221

    Article  PubMed  CAS  Google Scholar 

  • Scheibner KA, Teaboldt B, Hauer MC et al (2012) MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14-3-3theta. PLoS One 7:e50895

    Article  PubMed  CAS  Google Scholar 

  • Sherer TB, Betarbet R, Stout AK et al (2002) An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015

    PubMed  CAS  Google Scholar 

  • Shin KJ, Wall EA, Zavzavadjian JR et al (2006) A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc Natl Acad Sci U S A 103:13759–13764

    Article  PubMed  CAS  Google Scholar 

  • Simunovic F, Yi M, Wang Y et al (2009) Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson's disease pathology. Brain 132:1795–1809

    Article  PubMed  Google Scholar 

  • Singleton AB, Farrer M, Johnson J et al (2003) Alpha-synuclein locus triplication causes Parkinson's disease. Science 302:841

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  PubMed  CAS  Google Scholar 

  • Storvik M, Arguel MJ, Schmieder S et al (2010) Genes regulated in MPTP-treated macaques and human Parkinson's disease suggest a common signature in prefrontal cortex. Neurobiol Dis 38:386–394

    Article  PubMed  CAS  Google Scholar 

  • Sutherland GT, Matigian NA, Chalk AM et al (2009) A cross-study transcriptional analysis of Parkinson's disease. PLoS One 4:e4955

    Article  PubMed  Google Scholar 

  • Suzuki H, Itoh F, Toyota M, Kikuchi T, Kakiuchi H, Imai K (2000) Inactivation of the 14-3-3 sigma gene is associated with 5' CpG island hypermethylation in human cancers. Cancer Res 60:4353–4357

    PubMed  CAS  Google Scholar 

  • Ulitsky I, Krishnamurthy A, Karp RM, Shamir R (2010) DEGAS: de novo discovery of dysregulated pathways in human diseases. PLoS One 5:e13367

    Article  PubMed  Google Scholar 

  • van Hemert MJ, Steensma HY, van Heusden GP (2001) 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays 23:936–946

    Article  PubMed  Google Scholar 

  • Xu J, Kao SY, Lee FJ, Song W, Jin LW, Yankner BA (2002) Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8:600–606

    Article  PubMed  CAS  Google Scholar 

  • Yacoubian TA, Cantuti-Castelvetri I, Bouzou B et al (2008) Transcriptional dysregulation in a transgenic model of Parkinson disease. Neurobiol Dis 29:515–528

    Article  PubMed  CAS  Google Scholar 

  • Yacoubian TA, Slone SR, Harrington AJ et al (2010) Differential neuroprotective effects of 14-3-3 proteins in models of Parkinson's disease. Cell Death Dis 1:e2

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, James M, Middleton FA, Davis RL (2005) Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am J Med Genet B Neuropsychiatr Genet 137B:5–16

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mary Ballestas and the UAB Neuroscience Core Center (P30 NS47466) for preparing the pLKO.1 control and α-syn shRNA lentiviruses, and the doxycycline-inducible α-syn pSLIK lentivirus. Consultative services on biostatistics were supported by the National Center for Advancing Translational Research of the NIH under award number UL1TR00165. The research reported in the publication was supported by the NINDS of the NIH under award number NS060948 and by the Parkinson's Association of Alabama.

Conflict of Interest

Huiping Ding, Naomi Fineberg, and Michelle Gray have no conflict of interest to declare. Talene Yacoubian declares that she has US Patent # 7,919,262 on the use of 14-3-3s in neurodegeneration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talene A. Yacoubian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, H., Fineberg, N.S., Gray, M. et al. α-Synuclein Overexpression Represses 14-3-3θ Transcription. J Mol Neurosci 51, 1000–1009 (2013). https://doi.org/10.1007/s12031-013-0086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0086-5

Keywords

Navigation