Skip to main content

Advertisement

Log in

Glibenclamide in Cerebral Ischemia and Stroke

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

The sulfonylurea receptor 1 (Sur1)–transient receptor potential 4 (Trpm4) channel is an important molecular element in focal cerebral ischemia. The channel is upregulated in all cells of the neurovascular unit following ischemia, and is linked to microvascular dysfunction that manifests as edema formation and secondary hemorrhage, which cause brain swelling. Activation of the channel is a major molecular mechanism of cytotoxic edema and “accidental necrotic cell death.” Blockade of Sur1 using glibenclamide has been studied in different types of rat models of stroke: (i) in conventional non-lethal models (thromboembolic, 1–2 h temporary, or permanent middle cerebral artery occlusion), glibenclamide reduces brain swelling and infarct volume and improves neurological function; (ii) in lethal models of malignant cerebral edema, glibenclamide reduces edema, brain swelling, and mortality; (iii) in models with rtPA, glibenclamide reduces swelling, hemorrhagic transformation, and death. Retrospective studies of diabetic patients who present with stroke have shown that those whose diabetes is managed with a sulfonylurea drug and who are maintained on the sulfonylurea drug during hospitalization for stroke have better outcomes at discharge and are less likely to suffer hemorrhagic transformation. Here, we provide a comprehensive review of the basic science, preclinical experiments, and retrospective clinical studies on glibenclamide in focal cerebral ischemia and stroke. We also compare the preclinical work in stroke models to the updated recommendations of the Stroke Therapy Academic Industry Roundtable (STAIR). The findings reviewed here provide a strong foundation for a translational research program to study glibenclamide in patients with ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Truelsen T, Begg S, Mathers C. The global burden of cerebrovascular disease. http://www.who.int/healthinfo/statistics/bod_cerebrovasculardiseasestroke.pdf. Accessed 10 Jan 2013.

  2. Go AS, Mozaffarian D, Roger VL, et al. Executive summary: Heart Disease and Stroke Statistics–2013 update: a report from the American Heart Association. Circulation. 2013;127:143–52.

    Article  PubMed  Google Scholar 

  3. Hacke W, Schwab S, Horn M, Spranger M, De GM, von KR. ‘Malignant’ middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol. 1996;53:309–15.

    Article  CAS  PubMed  Google Scholar 

  4. Berrouschot J, Sterker M, Bettin S, Koster J, Schneider D. Mortality of space-occupying (‘malignant’) middle cerebral artery infarction under conservative intensive care. Intensive Care Med. 1998;24:620–3.

    Article  CAS  PubMed  Google Scholar 

  5. Adeoye O, Hornung R, Khatri P, Kleindorfer D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke. 2011;42:1952–5.

    Article  CAS  PubMed  Google Scholar 

  6. Kleindorfer D, Lindsell CJ, Brass L, Koroshetz W, Broderick JP. National US estimates of recombinant tissue plasminogen activator use: ICD-9 codes substantially underestimate. Stroke. 2008;39:924–8.

    Article  PubMed  Google Scholar 

  7. Singer OC, Hamann GF, Misselwitz B, Steinmetz H, Foerch C. Time trends in systemic thrombolysis in a large hospital-based stroke registry. Cerebrovasc Dis. 2012;33:316–21.

    Article  CAS  PubMed  Google Scholar 

  8. Jauss M, Schutz HJ, Tanislav C, Misselwitz B, Rosenow F. Effect of daytime, weekday and year of admission on outcome in acute ischaemic stroke patients treated with thrombolytic therapy. Eur J Neurol. 2010;17:555–61.

    Article  CAS  PubMed  Google Scholar 

  9. Bryan J, Munoz A, Zhang X, et al. ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch. 2007;453:703–18.

    Article  CAS  PubMed  Google Scholar 

  10. Burke MA, Mutharasan RK, Ardehali H. The sulfonylurea receptor, an atypical ATP-binding cassette protein, and its regulation of the KATP channel. Circ Res. 2008;102:164–76.

    Article  CAS  PubMed  Google Scholar 

  11. Aittoniemi J, Fotinou C, Craig TJ, de WH, Proks P, Ashcroft FM. Review. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philos Trans R Soc Lond B Biol Sci. 2008;364:257–67.

    Article  PubMed Central  Google Scholar 

  12. Woo SK, Kwon MS, Ivanov A, Gerzanich V, Simard JM. The sulfonylurea receptor 1 (sur1)–transient receptor potential melastatin 4 (trpm4) channel. J Biol Chem. 2013;288:3655–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Yamada K, Inagaki N. Neuroprotection by KATP channels. J Mol Cell Cardiol. 2005;38:945–9.

    Article  CAS  PubMed  Google Scholar 

  14. Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab. 2012;32:1699–717.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Simard JM, Woo SK, Gerzanich V. Transient receptor potential melastatin 4 and cell death. Pflugers Arch. 2012;464:573–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Simard JM, Chen M, Tarasov KV, et al. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12:433–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Simard JM, Tsymbalyuk N, Tsymbalyuk O, Ivanova S, Yurovsky V, Gerzanich V. Glibenclamide is superior to decompressive craniectomy in a rat model of malignant stroke. Stroke. 2010;41:531–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mehta RI, Ivanova S, Tosun C, Castellani RJ, Gerzanich V, Simard JM. Sulfonylurea receptor 1 expression in human cerebral infarcts. J Neuropathol Exp Neurol. 2013;72:871–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Loh KP, Ng G, Yu CY, et al. TRPM4 inhibition promotes angiogenesis after ischemic stroke. Pflugers Arch. 2013. doi:10.1007/s00424-013-1347-4.

  20. Gerzanich V, Woo SK, Vennekens R, et al. De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med. 2009;15:185–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bano D, Nicotera P. Ca2+ signals and neuronal death in brain ischemia. Stroke. 2007;38:674–6.

    Article  CAS  PubMed  Google Scholar 

  22. Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium. 2003;34:325–37.

    Article  CAS  PubMed  Google Scholar 

  23. Liss B, Roeper J. Molecular physiology of neuronal K-ATP channels (review). Mol Membr Biol. 2001;18:117–27.

    Article  CAS  PubMed  Google Scholar 

  24. Pelletier MR, Pahapill PA, Pennefather PS, Carlen PL. Analysis of single K(ATP) channels in mammalian dentate gyrus granule cells. J Neurophysiol. 2000;84:2291–301.

    CAS  PubMed  Google Scholar 

  25. Sullivan HC, Harik SI. ATP-sensitive potassium channels are not expressed in brain microvessels. Brain Res. 1993;612:336–8.

    Article  CAS  PubMed  Google Scholar 

  26. Woo SK, Kwon MS, Geng Z, et al. Sequential activation of hypoxia-inducible factor 1 and specificity protein 1 is required for hypoxia-induced transcriptional stimulation of Abcc8. J Cereb Blood Flow Metab. 2012;32:525–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Simard JM, Woo SK, Tsymbalyuk N, et al. Glibenclamide-10-h treatment window in a clinically relevant model of stroke. Transl Stroke Res. 2012;3:286–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Simard JM, Tsymbalyuk O, Ivanov A, et al. Endothelial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J Clin Invest. 2007;117:2105–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Simard JM, Geng Z, Woo SK, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:317–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kunte H, Busch MA, Trostdorf K, et al. Hemorrhagic transformation of ischemic stroke in diabetics on sulfonylureas. Ann Neurol. 2012;72:799–806.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chen M, Dong Y, Simard JM. Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J Neurosci. 2003;23:8568–77.

    CAS  PubMed  Google Scholar 

  32. Simard JM, Woo SK, Bhatta S, Gerzanich V. Drugs acting on SUR1 to treat CNS ischemia and trauma. Curr Opin Pharmacol. 2008;8:42–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Findlay I. Effects of pH upon the inhibition by sulphonylurea drugs of ATP-sensitive K+ channels in cardiac muscle. J Pharmacol Exp Ther. 1992;262:71–9.

    CAS  PubMed  Google Scholar 

  34. Tomiyama Y, Brian JE Jr, Todd MM. Cerebral blood flow during hemodilution and hypoxia in rats : role of ATP-sensitive potassium channels. Stroke. 1999;30:1942–7.

    Article  CAS  PubMed  Google Scholar 

  35. Nedergaard M, Kraig RP, Tanabe J, Pulsinelli WA. Dynamics of interstitial and intracellular pH in evolving brain infarct. Am J Physiol. 1991;260:R581–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Ortega FJ, Gimeno-Bayon J, Espinosa-Parrilla JF, et al. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia–ischemia in rats. Exp Neurol. 2012;235:282–96.

    Article  CAS  PubMed  Google Scholar 

  37. Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6:258–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Weiss N, Miller F, Cazaubon S, Couraud PO. The blood–brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta. 2009;1788:842–57.

    Article  CAS  PubMed  Google Scholar 

  39. Simard JM, Yurovsky V, Tsymbalyuk N, Melnichenko L, Ivanova S, Gerzanich V. Protective effect of delayed treatment with low-dose glibenclamide in three models of ischemic stroke. Stroke. 2009;40:604–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ortega FJ, Jolkkonen J, Mahy N, Rodriguez MJ. Glibenclamide enhances neurogenesis and improves long-term functional recovery after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 2012;33:356–64.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Wali B, Ishrat T, Atif F, Hua F, Stein DG, Sayeed I. Glibenclamide administration attenuates infarct volume, hemispheric swelling, and functional impairments following permanent focal cerebral ischemia in rats. Stroke Res Treat. 2012;2012:460909. doi:10.1155/2012/460909.

    PubMed Central  PubMed  Google Scholar 

  42. Petullo D, Masonic K, Lincoln C, Wibberley L, Teliska M, Yao DL. Model development and behavioral assessment of focal cerebral ischemia in rats. Life Sci. 1999;64:1099–108.

    Article  CAS  PubMed  Google Scholar 

  43. Virtanen T, Sivenius J, Jolkkonen J. Dehydration and stress do not explain severe weight loss after experimental stroke in rats. J Animal Vet Adv. 2003;2:247–52.

    Google Scholar 

  44. Virtanen T, Jolkkonen J, Sivenius J. Re: External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats. Stroke. 2004;35:e9–10.

    Article  PubMed  Google Scholar 

  45. Simard JM, Geng Z, Silver FL, et al. Does inhibiting Sur1 complement rt-PA in cerebral ischemia? Ann N Y Acad Sci. 2012;1268:95–107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Abdallah DM, Nassar NN, Abd-El-Salam RM. Glibenclamide ameliorates ischemia-reperfusion injury via modulating oxidative stress and inflammatory mediators in the rat hippocampus. Brain Res. 2011;1385:257–62.

    Article  CAS  PubMed  Google Scholar 

  47. Figura M, Chilton L, Liacini A, et al. Blockade of K(ATP) channels reduces endothelial hyperpolarization and leukocyte recruitment upon reperfusion after hypoxia. Am J Transplant. 2009;9:687–96.

    Article  CAS  PubMed  Google Scholar 

  48. Da Silva-Santos JE, Santos-Silva MC, Cunha FQ, Assreuy J. The role of ATP-sensitive potassium channels in neutrophil migration and plasma exudation. J Pharmacol Exp Ther. 2002;300:946–51.

    Article  PubMed  Google Scholar 

  49. Pompermayer K, Amaral FA, Fagundes CT, et al. Effects of the treatment with glibenclamide, an ATP-sensitive potassium channel blocker, on intestinal ischemia and reperfusion injury. Eur J Pharmacol. 2007;556:215–22.

    Article  CAS  PubMed  Google Scholar 

  50. Pompermayer K, Souza DG, Lara GG, et al. The ATP-sensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats. Kidney Int. 2005;67:1785–96.

    Article  CAS  PubMed  Google Scholar 

  51. Nistico R, Piccirilli S, Sebastianelli L, Nistico G, Bernardi G, Mercuri NB. The blockade of K(+)-ATP channels has neuroprotective effects in an in vitro model of brain ischemia. Int Rev Neurobiol. 2007;82:383–95.

    Article  CAS  PubMed  Google Scholar 

  52. Huang H, Gao TM, Gong L, Zhuang Z, Li X. Potassium channel blocker TEA prevents CA1 hippocampal injury following transient forebrain ischemia in adult rats. Neurosci Lett. 2001;305:83–6.

    Article  CAS  PubMed  Google Scholar 

  53. Ortega FJ, Jolkkonen J, Rodriguez MJ. Microglia is an active player in how glibenclamide improves stroke outcome. J Cereb Blood Flow Metab. 2013;33:1138–9.

    Article  CAS  PubMed  Google Scholar 

  54. Schaller B, editor. Cerebral ischemic tolerance: from animal models to clinical relevance. New York: Nova Science Publishers; 2004.

  55. Durukan A, Tatlisumak T. Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. Exp Transl Stroke Med. 2010;2:2.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Kirino T. Ischemic tolerance. J Cereb Blood Flow Metab. 2002;22:1283–96.

    Article  PubMed  Google Scholar 

  57. Dirnagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 2003;26:248–54.

    Article  CAS  PubMed  Google Scholar 

  58. Heurteaux C, Lauritzen I, Widmann C, Lazdunski M. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci U S A. 1995;92:4666–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Sorimachi T, Nowak TS Jr. Pharmacological manipulations of ATP-dependent potassium channels and adenosine A1 receptors do not impact hippocampal ischemic preconditioning in vivo: evidence in a highly quantitative gerbil model. J Cereb Blood Flow Metab. 2004;24:556–63.

    Article  CAS  PubMed  Google Scholar 

  60. Munoz A, Nakazaki M, Goodman JC, et al. Ischemic preconditioning in the hippocampus of a knockout mouse lacking SUR1-based K(ATP) channels. Stroke. 2003;34:164–70.

    Article  CAS  PubMed  Google Scholar 

  61. Hamann GF. Clinical aspects of ischemic tolerance in the brain. In: Schaller B, editor. Cerebral ischemic tolerance: from animal models to clinical relevance. New York: Nova Science Publishers; 2004. p. 115–9.

    Google Scholar 

  62. Kunte H, Schmidt S, Eliasziw M, et al. Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke. 2007;38:2526–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. No authors listed. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 1999; 30: 2752–2758.

    Google Scholar 

  64. Fisher M, Feuerstein G, Howells DW, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40:2244–50.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Tosun C, Koltz MT, Kurland DB, et al. The protective effect of glibenclamide in a model of hemorrhagic encephalopathy of prematurity. Brain Sci. 2013;3:215–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Toyota S, Graf R, Valentino M, Yoshimine T, Heiss WD. Prediction of malignant infarction: perifocal neurochemical monitoring following prolonged MCA occlusion in cats. Acta Neurochir Suppl. 2003;86:153–7.

    CAS  PubMed  Google Scholar 

  67. Toyota S, Graf R, Valentino M, Yoshimine T, Heiss WD. Malignant infarction in cats after prolonged middle cerebral artery occlusion: glutamate elevation related to decrease of cerebral perfusion pressure. Stroke. 2002;33:1383–91.

    Article  PubMed  Google Scholar 

  68. del Zoppo GJ, Copeland BR, Harker LA, et al. Experimental acute thrombotic stroke in baboons. Stroke. 1986;17:1254–65.

    Article  PubMed  Google Scholar 

  69. Fukuda S, del Zoppo GJ. Models of focal cerebral ischemia in the nonhuman primate. ILAR J. 2003;44:96–104.

    Article  CAS  PubMed  Google Scholar 

  70. West GA, Golshani KJ, Doyle KP, et al. A new model of cortical stroke in the rhesus macaque. J Cereb Blood Flow Metab. 2009;29:1175–86.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Bahjat FR, Williams-Karnesky RL, Kohama SG, et al. Proof of concept: pharmacological preconditioning with a Toll-like receptor agonist protects against cerebrovascular injury in a primate model of stroke. J Cereb Blood Flow Metab. 2011;31:1229–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Cook DJ, Tymianski M. Nonhuman primate models of stroke for translational neuroprotection research. Neurotherapeutics. 2012;9:371–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Cook DJ, Teves L, Tymianski M. A translational paradigm for the preclinical evaluation of the stroke neuroprotectant Tat-NR2B9c in gyrencephalic nonhuman primates. Sci Transl Med. 2012;4:154ra133.

    PubMed  Google Scholar 

  74. Zabramski JM, Spetzler RF, Selman WR, et al. Naloxone therapy during focal cerebral ischemia evaluation in a primate model. Stroke. 1984;15:621–7.

    Article  CAS  PubMed  Google Scholar 

  75. Weih M, Amberger N, Wegener S, Dirnagl U, Reuter T, Einhaupl K. Sulfonylurea drugs do not influence initial stroke severity and in-hospital outcome in stroke patients with diabetes. Stroke. 2001;32:2029–32.

    Article  CAS  PubMed  Google Scholar 

  76. Favilla CG, Mullen MT, Ali M, Higgins P, Kasner SE. Sulfonylurea use before stroke does not influence outcome. Stroke. 2011;42:710–5.

    Article  CAS  PubMed  Google Scholar 

  77. Silver FL, Fang J, Robertson AC, Casaubon L, Kapral MK. Possible neuroprotective effects of sulfonylureas in diabetic patients with acute ischemic stroke. Stroke. 2009;40:51.

    Google Scholar 

  78. Mishra MK, Ray D, Barik BB. Microcapsules and transdermal patch: a comparative approach for improved delivery of antidiabetic drug. AAPS PharmSciTech. 2009;10:928–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Zhou Y, Fathali N, Lekic T, Tang J, Zhang JH. Glibenclamide improves neurological function in neonatal hypoxia-ischemia in rats. Brain Res. 2009;1270:131–9.

    Article  CAS  PubMed  Google Scholar 

  80. Gray CS, Hildreth AJ, Sandercock PA, et al. Glucose–potassium–insulin infusions in the management of post-stroke hyperglycaemia: the UK glucose insulin in stroke trial (GIST-UK). Lancet Neurol. 2007;6:397–406.

    Article  CAS  PubMed  Google Scholar 

  81. Bruno A, Kent TA, Coull BM, et al. Treatment of hyperglycemia in ischemic stroke (THIS): a randomized pilot trial. Stroke. 2008;39:384–9.

    Article  CAS  PubMed  Google Scholar 

  82. Johnston KC, Hall CE, Kissela BM, Bleck TP, Conaway MR. Glucose regulation in acute stroke patients (GRASP) trial: a randomized pilot trial. Stroke. 2009;40:3804–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59:467–77.

    Article  PubMed  Google Scholar 

  84. Arboix A. Potential impact of sulfonylureas in the outcome of type 2 diabetic patients with ischemic stroke. Stroke. 2007;38:2413–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants to JMS from the National Institute of Neurological Disorders and Stroke (NS061808) and the National Heart, Lung and Blood Institute (HL082517).

Conflict of interest

JMS holds a US patent (#7,285,574), “A novel non-selective cation channel in neural cells and methods for treating brain swelling,” and is a member of the scientific advisory board and holds shares in Remedy Pharmaceuticals. No support was provided by Remedy Pharmaceuticals to JMS or to other university-affiliated authors for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Marc Simard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simard, J.M., Sheth, K.N., Kimberly, W.T. et al. Glibenclamide in Cerebral Ischemia and Stroke. Neurocrit Care 20, 319–333 (2014). https://doi.org/10.1007/s12028-013-9923-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-013-9923-1

Keywords

Navigation