Skip to main content

Advertisement

Log in

Secondary Peaks of S100B in Serum Relate to Subsequent Radiological Pathology in Traumatic Brain Injury

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Introduction

Patients suffering from severe traumatic brain injury (TBI) often develop secondary brain lesions that may worsen outcome. S100B, a biomarker of brain damage, has been shown to increase in response to secondary cerebral deterioration. The aim of this study was to analyze the occurrence of secondary increases in serum levels of S100B and their relation to potential subsequent radiological pathology present on CT/MRI-scans.

Methods

Retrospective study from a trauma level 1 hospital, neuro-intensive care unit. 250 patients suffering from TBI were included. Inclusion required a minimum of two radiological examinations and at least three serum samples of S100B, with at least one >48 h after trauma.

Results

Secondary pathological findings on CT/MRI, present in 39 % (n = 98) of the patients, were highly correlated to secondary increases of ≥0.05 μg/L S100B (P < 0.0001, pseudo-R 2 0.532). Significance remained also after adjusting for known important TBI predictors. In addition, secondary radiological findings were significantly correlated to outcome (Glasgow Outcome Score, GOS) in uni-(P < 0.0001, pseudo-R 2 0.111) and multivariate analysis. The sensitivity and specificity of detecting later secondary radiological findings was investigated at three S100B cut-off levels: 0.05, 0.1, and 0.5 μg/L. A secondary increase of ≥0.05 μg/L had higher sensitivity (80 %) but lower specificity (89 %), compared with a secondary increase of ≥0.5 μg/L (16 % sensitivity, 98 % specificity), to detect secondary radiological findings.

Conclusions

Secondary increases in serum levels of S100B, even as low as ≥0.05 μg/L, beyond 48 h after TBI are strongly correlated to the development of clinically significant secondary radiological findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Corrigan JD, Selassie AW, Orman JA. The epidemiology of traumatic brain injury. J Head Trauma Rehabil. 2010;25:72–80.

    Article  PubMed  Google Scholar 

  2. Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma. 2007;24(Suppl 1):S37–44.

    PubMed  Google Scholar 

  3. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, et al. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J Neurotrauma. 2007;24(Suppl 1):S55–8.

    Google Scholar 

  4. Chambers IR, Treadwell L, Mendelow AD. The cause and incidence of secondary insults in severely head-injured adults and children. Br J Neurosurg. 2000;14:424–31.

    Article  CAS  PubMed  Google Scholar 

  5. Graham DI, Ford I, Adams JH, et al. Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry. 1989;52:346–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Verweij BH, Muizelaar JP, Vinas FC, Peterson PL, Xiong Y, Lee CP. Impaired cerebral mitochondrial function after traumatic brain injury in humans. J Neurosurg. 2000;93:815–20.

    Article  CAS  PubMed  Google Scholar 

  7. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99:4–9.

    Article  CAS  PubMed  Google Scholar 

  8. Marmarou A, Signoretti S, Fatouros PP, Portella G, Aygok GA, Bullock MR. Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J Neurosurg. 2006;104:720–30.

    Article  PubMed  Google Scholar 

  9. Kochanek PM, Berger RP, Bayir H, Wagner AK, Jenkins LW, Clark RS. Biomarkers of primary and evolving damage in traumatic and ischemic brain injury: diagnosis, prognosis, probing mechanisms, and therapeutic decision making. Curr Opin Crit Care. 2008;14:135–41.

    Article  PubMed  Google Scholar 

  10. Slemmer JE, Weber JT, De Zeeuw CI. Cell death, glial protein alterations and elevated S-100 beta release in cerebellar cell cultures following mechanically induced trauma. Neurobiol Dis. 2004;15:563–72.

    Article  CAS  PubMed  Google Scholar 

  11. Oertel M, Schumacher U, McArthur DL, Kastner S, Boker DK. S-100B and NSE: markers of initial impact of subarachnoid haemorrhage and their relation to vasospasm and outcome. J Clin Neurosci. 2006;13:834–40.

    Article  CAS  PubMed  Google Scholar 

  12. Moritz S, Warnat J, Bele S, Graf BM, Woertgen C. The prognostic value of NSE and S100B from serum and cerebrospinal fluid in patients with spontaneous subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2010;22:21–31.

    Article  PubMed  Google Scholar 

  13. James ML, Blessing R, Phillips-Bute BG, Bennett E, Laskowitz DT. S100B and brain natriuretic peptide predict functional neurological outcome after intracerebral haemorrhage. Biomarkers. 2009;14:388–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Romner B, Ingebrigtsen T, Kongstad P, Borgesen SE. Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings. J Neurotrauma. 2000;17:641–7.

    Article  CAS  PubMed  Google Scholar 

  15. Unden J, Bellner J, Astrand R, Romner B. Serum S100B levels in patients with epidural haematomas. Br J Neurosurg. 2005;19:43–5.

    Article  CAS  PubMed  Google Scholar 

  16. Stein DM, Lindell AL, Murdock KR, et al. Use of serum biomarkers to predict cerebral hypoxia after severe traumatic brain injury. J Neurotrauma. 2012;29:1140–9.

    Article  PubMed  Google Scholar 

  17. Buttner T, Weyers S, Postert T, Sprengelmeyer R, Kuhn W. S-100 protein: serum marker of focal brain damage after ischemic territorial MCA infarction. Stroke. 1997;28:1961–5.

    Article  CAS  PubMed  Google Scholar 

  18. Muller K, Townend W, Biasca N, et al. S100B serum level predicts computed tomography findings after minor head injury. J Trauma. 2007;62:1452–6.

    Article  CAS  PubMed  Google Scholar 

  19. Thelin EP, Johannesson L, Nelson D, Bellander BM. S100B is an important outcome predictor in traumatic brain injury. J Neurotrauma. 2013;30:519–28.

    Article  PubMed  Google Scholar 

  20. Jonsson H, Johnsson P, Hoglund P, Alling C, Blomquist S. Elimination of S100B and renal function after cardiac surgery. J Cardiothorac Vasc Anesth. 2000;14:698–701.

    Article  CAS  PubMed  Google Scholar 

  21. Ghanem G, Loir B, Morandini R, et al. On the release and half-life of S100B protein in the peripheral blood of melanoma patients. Int J Cancer. 2001;94:586–90.

    Article  CAS  PubMed  Google Scholar 

  22. Usui A, Kato K, Abe T, Murase M, Tanaka M, Takeuchi E. S-100ao protein in blood and urine during open-heart surgery. Clin Chem. 1989;35:1942–4.

    CAS  PubMed  Google Scholar 

  23. Kapural M, Krizanac-Bengez L, Barnett G, et al. Serum S-100beta as a possible marker of blood-brain barrier disruption. Brain Res. 2002;940:102–4.

    Article  CAS  PubMed  Google Scholar 

  24. Pelinka LE, Toegel E, Mauritz W, Redl H. Serum S 100 B: a marker of brain damage in traumatic brain injury with and without multiple trauma. Shock. 2003;19:195–200.

    Article  CAS  PubMed  Google Scholar 

  25. Gradisek P, Osredkar J, Korsic M, Kremzar B. Multiple indicators model of long-term mortality in traumatic brain injury. Brain Inj. 2012;26(12):1472–81.

    Article  PubMed  Google Scholar 

  26. Berger RP, Bazaco MC, Wagner AK, Kochanek PM, Fabio A. Trajectory analysis of serum biomarker concentrations facilitates outcome prediction after pediatric traumatic and hypoxemic brain injury. Dev Neurosci. 2010;32:396–405.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Bellander BM, Olafsson IH, Ghatan PH, et al. Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B. Acta Neurochir (Wien). 2011;153:90–100.

    Article  Google Scholar 

  28. Olivecrona M, Rodling-Wahlstrom M, Naredi S, Koskinen LO. S-100B and neuron specific enolase are poor outcome predictors in severe traumatic brain injury treated by an intracranial pressure targeted therapy. J Neurol Neurosurg Psychiatry. 2009;80:1241–7.

    Article  CAS  PubMed  Google Scholar 

  29. Raabe A, Kopetsch O, Woszczyk A, et al. S-100B protein as a serum marker of secondary neurological complications in neurocritical care patients. Neurol Res. 2004;26:440–5.

    Article  PubMed  Google Scholar 

  30. Unden J, Astrand R, Waterloo K, et al. Clinical significance of serum S100B levels in neurointensive care. Neurocrit Care. 2007;6:94–9.

    Article  CAS  PubMed  Google Scholar 

  31. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2:81–4.

    Article  CAS  PubMed  Google Scholar 

  32. Perel P, Arango M, Clayton T, et al. Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ. 2008;336:425–9.

    Article  PubMed  Google Scholar 

  33. Acker JE, Ali J, Aprahamian C, et al. Advanced trauma life support for doctors—ATLS. 7th ed. Chicago: American College of Surgeons Committee on Trauma; 2004.

    Google Scholar 

  34. Tong WS, Zheng P, Zeng JS, et al. Prognosis analysis and risk factors related to progressive intracranial haemorrhage in patients with acute traumatic brain injury. Brain Inj. 2012;26:1136–42.

    Article  PubMed  Google Scholar 

  35. Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet. 1975;1:480–4.

    Article  CAS  PubMed  Google Scholar 

  36. Jones PA, Andrews PJ, Midgley S, et al. Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol. 1994;6:4–14.

    Article  CAS  PubMed  Google Scholar 

  37. Petzold A, Green AJ, Keir G, et al. Role of serum S100B as an early predictor of high intracranial pressure and mortality in brain injury: a pilot study. Crit Care Med. 2002;30:2705–10.

    Article  CAS  PubMed  Google Scholar 

  38. Signorini DF, Andrews PJ, Jones PA, Wardlaw JM, Miller JD. Adding insult to injury: the prognostic value of early secondary insults for survival after traumatic brain injury. J Neurol Neurosurg Psychiatry. 1999;66:26–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Biberthaler P, Linsenmeier U, Pfeifer KJ, et al. Serum S-100B concentration provides additional information for the indication of computed tomography in patients after minor head injury: a prospective multicenter study. Shock. 2006;25:446–53.

    Article  CAS  PubMed  Google Scholar 

  40. McHugh GS, Butcher I, Steyerberg EW, et al. Statistical approaches to the univariate prognostic analysis of the IMPACT database on traumatic brain injury. J Neurotrauma. 2007;24:251–8.

    Article  PubMed  Google Scholar 

  41. Murray GD, Butcher I, McHugh GS, et al. Multivariable prognostic analysis in traumatic brain injury: results from the IMPACT study. J Neurotrauma. 2007;24:329–37.

    Article  PubMed  Google Scholar 

  42. Murillo-Cabezas F, Munoz-Sanchez MA, Rincon-Ferrari MD, et al. The prognostic value of the temporal course of S100beta protein in post-acute severe brain injury: a prospective and observational study. Brain Inj. 2010;24:609–19.

    Article  PubMed  Google Scholar 

  43. Lovell MA, Mudaliar MY, Klineberg PL. Intrahospital transport of critically ill patients: complications and difficulties. Anaesth Intensive Care. 2001;29:400–5.

    CAS  PubMed  Google Scholar 

  44. Andrews PJ, Piper IR, Dearden NM, Miller JD. Secondary insults during intrahospital transport of head-injured patients. Lancet. 1990;335:327–30.

    Article  CAS  PubMed  Google Scholar 

  45. Gunnarsson T, Hillman J. Clinical usefulness of bedside intracranial morphological monitoring: mobile computerized tomography in the neurosurgery intensive care unit. Report of three cases. Neurosurg Focus. 2000;9:e5.

    CAS  PubMed  Google Scholar 

  46. Bouvier D, Eisenmann N, Gillart T, et al. Jugular venous and arterial concentrations of serum S100B protein in patients with severe head injury. Ann Biol Clin (Paris). 2012;70:269–75.

    CAS  Google Scholar 

  47. Fazio V, Bhudia SK, Marchi N, Aumayr B, Janigro D. Peripheral detection of S100beta during cardiothoracic surgery: what are we really measuring? Ann Thorac Surg 2004;78:46–52; discussion-3.

    Google Scholar 

  48. Unden J, Bellner J, Eneroth M, Alling C, Ingebrigtsen T, Romner B. Raised serum S100B levels after acute bone fractures without cerebral injury. J Trauma. 2005;58:59–61.

    Article  PubMed  Google Scholar 

  49. Routsi C, Stamataki E, Nanas S, et al. Increased levels of serum S100B protein in critically ill patients without brain injury. Shock. 2006;26:20–4.

    Article  CAS  PubMed  Google Scholar 

  50. Haimoto H, Hosoda S, Kato K. Differential distribution of immunoreactive S100-alpha and S100-beta proteins in normal nonnervous human tissues. Lab Invest. 1987;57:489–98.

    CAS  PubMed  Google Scholar 

  51. Unden J, Christensson B, Bellner J, Alling C, Romner B. Serum S100B levels in patients with cerebral and extracerebral infectious disease. Scand J Infect Dis. 2004;36:10–3.

    Article  CAS  PubMed  Google Scholar 

  52. Savola O, Pyhtinen J, Leino TK, Siitonen S, Niemela O, Hillbom M. Effects of head and extracranial injuries on serum protein S100B levels in trauma patients. J Trauma 2004;56:1229–34; discussion 34.

    Google Scholar 

  53. Persson ME, Thelin EP, Bellander BM. Case report: extreme levels of serum S-100B in a patient with chronic subdural hematoma. Front Neurol. 2012;3:170.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Tian HL, Geng Z, Cui YH, et al. Risk factors for posttraumatic cerebral infarction in patients with moderate or severe head trauma. Neurosurg Rev 2008;31:431–6; discussion 6–7.

    Google Scholar 

  55. Robertson CS, Grossman RG, Goodman JC, Narayan RK. The predictive value of cerebral anaerobic metabolism with cerebral infarction after head injury. J Neurosurg. 1987;67:361–8.

    Article  CAS  PubMed  Google Scholar 

  56. Marshall LF, Gautille T. Large and small “holes” in the brain: reversible or irreversible changes in head injury. Acta Neurochir Suppl (Wien). 1990;51:300–1.

    CAS  Google Scholar 

  57. Rothfus WE, Goldberg AL, Tabas JH, Deeb ZL. Callosomarginal infarction secondary to transfalcial herniation. AJNR Am J Neuroradiol. 1987;8:1073–6.

    CAS  PubMed  Google Scholar 

  58. Marmarou A, Fatouros PP, Barzo P, et al. Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J Neurosurg. 2000;93:183–93.

    Article  CAS  PubMed  Google Scholar 

  59. Raabe A, Seifert V. Fatal secondary increase in serum S-100B protein after severe head injury. Report of three cases. J Neurosurg. 1999;91:875–7.

    Article  CAS  PubMed  Google Scholar 

  60. Einav S, Itshayek E, Kark JD, Ovadia H, Weiniger CF, Shoshan Y. Serum S100B levels after meningioma surgery: a comparison of two laboratory assays. BMC Clin Pathol. 2008;8:9.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Smit LH, Korse CM, Bonfrer JM. Comparison of four different assays for determination of serum S-100B. Int J Biol Markers. 2005;20:34–42.

    CAS  PubMed  Google Scholar 

  62. Mussack T, Klauss V, Ruppert V, et al. Rapid measurement of S-100B serum protein levels by Elecsys S100 immunoassay in patients undergoing carotid artery stenting or endarterectomy. Clin Biochem. 2006;39:349–56.

    Article  CAS  PubMed  Google Scholar 

  63. Alber B, Hein R, Garbe C, Caroli U, Luppa PB. Multicenter evaluation of the analytical and clinical performance of the Elecsys S100 immunoassay in patients with malignant melanoma. Clin Chem Lab Med. 2005;43:557–63.

    Article  CAS  PubMed  Google Scholar 

  64. Muller K, Elverland A, Romner B, et al. Analysis of protein S-100B in serum: a methodological study. Clin Chem Lab Med. 2006;44:1111–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Eric P. Thelin, David W. Nelson, and Bo-Michael Bellander declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric P. Thelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thelin, E.P., Nelson, D.W. & Bellander, BM. Secondary Peaks of S100B in Serum Relate to Subsequent Radiological Pathology in Traumatic Brain Injury. Neurocrit Care 20, 217–229 (2014). https://doi.org/10.1007/s12028-013-9916-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-013-9916-0

Keywords

Navigation